

Resolving Requirements Discovery in Testing and Operations

Robyn R. Lutz
Jet Propulsion Laboratory
and Iowa State University

rlutz@cs.iastate.edu

Inés Carmen Mikulski
Jet Propulsion Laboratory
Pasadena, CA 91109-8099

ines.c.mikulski@jpl.nasa.gov

Abstract

This paper describes the results of an investigation into
requirements discovery during testing and operations.
Requirements discovery includes both new
requirements and new knowledge regarding existing
requirements. Analysis of anomaly reports shows that
many of the anomalies that occur during these phases
involve requirements discovery. Previous work by the
authors identified four common mechanisms for
requirements discovery and resolution during testing.
The results reported here extend that work in two
ways: (1) to show that very similar requirements-
discovery mechanisms are at work in both testing and
operations, and (2) to evaluate the requirements-
discovery mechanisms against experience with seven
additional systems. The paper discusses the
consequences of these classifications and results in
terms of reducing requirements-based defects in
critical, embedded systems. Keywords: requirements
discovery, requirements evolution, defect analysis,
safety-critical systems, testing, operations.

1. Introduction

 For many critical, embedded systems, software
requirements continue to be discovered throughout the
system’s lifetime. The work described in this paper
investigates requirements discovery during the later
phases of projects, in particular during testing and
operations. Analysis of anomaly reports during testing
and operations shows that many of the anomalies

*The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. It
was funded by NASA’s Office of Safety and Mission Assurance,
Center Initiative UPN 323-08. The first author’s research is
supported in part by National Science Foundation Grants CCR-
0204139 and CCR-0205588.

during these phases involve software requirements
discovery. Stated in another way, incomplete
requirements and requirements misunderstandings are
the source of many testing and operational anomalies.

 Requirements discovery includes both new
requirements and new knowledge regarding existing
requirements that emerge during testing and operations.
We are interested here in understanding more precisely
what types of requirements discovery occur in systems
after they are built and what types of resolution occur
to handle these requirements-related anomalies. To
achieve this we analyze software anomaly reports in
order to characterize patterns of requirements
discovery and resolution.

 In previous work [13] we identified four common
mechanisms for requirements discovery and resolution
during the integration and system testing of a safety-
critical system:

• Incomplete requirements, resolved by changes
to the software

• Unexpected requirements interactions,
resolved by changes to the operational
procedures

• Requirements confusion on the part of the
testing personnel, resolved by changes to the
documentation, and

• Requirements confusion on the part of the
testing personnel, resolved by a decision that
no change was needed.

 In this paper we evaluate these four mechanisms for
requirements discovery and resolution on operational
(i.e., deployed) systems. The results reported here
extend the previous work in two ways: (1) to show that
very similar requirements-discovery mechanisms are at
work in both testing and operations, and (2) to evaluate
the requirements-discovery mechanisms against
experience with seven additional systems.

 The paper also discusses the consequences of these
classifications and results in terms of reducing
requirements-based defects in critical, embedded
systems . Specifically, the experience reported here
showed:

• that both testing and operational anomalies
reveal a dependence on procedures to satisfy
some newly identified requirement
interactions, such as required sequencings of
activities,

• that anomaly reports for one system can
identify requirements-related risk for similar,
future systems,

• that “false-positive” anomaly reports, where
the software behavior is actually correct but is
unexpected, provide valuable insights into
requirements confusions,

• and that analysis of anomaly reports allows us
to pinpoint some recurring patterns of
requirements confusion.

 The rest of the paper is organized as follows.
Section 2 describes the approach used to analyze the
anomalies. Section 3 presents and evaluates the
results. Section 4 discusses the implications of these
results and derives some lessons learned. Section 5
puts the results in the context of recent, related work.
Section 6 provides concluding remarks and identifies
some open questions.

2. Approach

 The approach to the work reported here was to
analyze the anomaly reports generated during testing
and operations to gain insight into requirements
problems. These data are contained in an institutional,
multi-project, on-line database. Although the on-line
forms differ somewhat for testing and operations, the
forms are similar. Both contain the following three
parts: a description of the problem, a subsequent
analysis of the problem, and a description of the
corrective action taken to close out the anomaly report.

 The testing dataset consisted of 326 filled-in
software anomaly reports written during integration
and system testing for the twin Mars Exploration Rover
(MER) spacecraft currently under development for
launch in summer, 2003. This more than doubles the
number of testing anomaly reports analyzed in the
initial set [13] and includes data up to mid -December,
2002. MER will explore Mars with two robotic
rovers equipped to search for, among other things,
evidence of past water.

 The operational dataset consisted of the 189
anomaly reports in the highest-criticality level
generated post-deployment by the operations teams on

seven other spacecraft. Operational data were analyzed
for the following recent or current spacecraft: the
Galileo mission to Jupiter, launched in 1989; Mars
Global Surveyor, launched in 1996; Cassini/Huygens,
launched in 1997 to Saturn and Titan; Deep Space 1, an
ion-propulsion and remote-agent technology mission,
launched in 1998; Mars Climate Orbiter, launched
in1998; Mars Polar Lander, launched in 1999; and
Stardust, a comet sample -return mission, also launched
in 1999.

 The anomaly reports document not only defects but
any behavior that is unexpected by the testing or
operational personnel. The anomaly reports are thus a
rich source of discovery of both latent requirements
(where the software does not behave correctly in some
situation) and of requirements confusion (where the
software behaves correctly but unexpectedly).

 The method of analysis for the anomaly reports is an
adaptation of Orthogonal Defect Classification
(ODC)[2]. ODC provides a way to “extract signatures
from defects” and to correlate the defects to attributes
of the development process.

 The ODC-based approach uses four attributes to
characterize each anomaly report. The first is the
Activity, which describes when the anomaly occurred
(e.g., System Test or Flight Operations). The Trigger
describes the environment or condition that had to exist
for the anomaly to surface (e.g., a Fault Recovery
condition or Hardware/Software interaction). The
Target characterizes the high-level entity that was fixed
in response to the anomaly’s occurrence (e.g., Flight
Software or Information Development). Finally, the
Type describes at a lower-level the actual fix that was
made (e.g., Documentation, Procedure, or
Function/Algorithm). Table 1 lists the ODC signatures
extracted for the requirements-discovery investigation.

 Each anomaly was classified twice, once by each of
the two authors. If there were discrepancies between
these two classifications, they were reconciled in joint
discussions. Both authors have experience on flight
projects at JPL, but neither is involved with the testing
or operations of the systems under study. Spacecraft
personnel, especially on MER, generously assisted us
by answering domain and process questions. A fuller
description of the classification process appears in [12].

 While all available test anomalies were analyzed, only
the critical operational anomaly reports were analyzed.
By “critical” we mean that the anomaly was ranked by
the project as highly critical. Depending on the fields
used by the project in their reporting, such anomalies
were thus marked as “red-flag,” “potential-red-flag,”
“high-criticality,” or “significant or catastrophic failure
effect risk.” Criticality ratings currently existed for only

a small subset of the testing reports, so criticality
ratings were not useful for analysis of the testing
anomalies.

 The fact that the same requirements-discovery
mechanisms evident in testing caused critical software
anomalies post-launch motivate continuing
investigation in this area. The goal of the multi-year
study in which this work is embedded is to reduce the
number of safety-critical software anomalies that occur
after launch.

Table 1. ODC signatures investigated

3. Results and analysis

 The results of the ODC analysis of the testing and
operational datasets showed that the mechanisms for
requirements discovery are very similar across both the
testing and the operations phases. Figure 1 summarizes
the results. It shows that 65 of the 326 testing
anomalies and 25 of the 189 critical operational
anomalies involve the requirements mechanisms
identified here. The following subsections describe
each of those four mechanisms with a discussion of
the ODC analyses for both the testing and the
operational datasets. Because some of the testing work
has been previously reported in [13], we describe it
only in enough detail to understand the comparison
with operations. Because the requirements discovery
work in operations is new, we describe it more fully.

Figure 2. Classification of anomaly reports

3.1 Incomplete requirements, resolved by
changes to software

 The first mechanism for requirements discovery is
incomplete or missing requirements resolved by
changes to the software. In these cases an anomaly
report is written during testing or operations. This
anomaly involves or results in the discovery of new
requirements knowledge. The corrective action taken
to fix the anomaly is to implement the new requirement
in the onboard flight software.

 Excluded from this class of requirements discovery
are requirements involved in the planned evolution or
scheduled maintenance of the system. Although these
activities routinely involve new requirements, these
new requirements are not anomaly -driven and do not
reflect requirements discovery in the same way.
Software is regularly uploaded to the spacecraft before
a new mission phase to control the activities associated
with that new phase. For example, as the mission
passes from cruise to planetary encounter, new
software requirements will be implemented in the flight
software. However, these planned updates do not
routinely reflect the discovery of new requirements.
This contrasts with the unplanned changes to
requirements prompted by critical anomalies during
operations that are studied here.

 In testing, there were 160 anomaly reports with an
ODC Target of “Flight Software.” The ODC Target
describes what was fixed. Thirty-five of these involved
incomplete or missing requirements resolved by
changes to the software. These missing requirements
were either unidentified or new requirements. Many of
these describe timing or initialization issues arising
from the interaction among software components or
between software and hardware. For exa mple, in one
such anomaly a new requirement became evident
during testing for the initial state for a component to
wait for completion of the initial move of a motor. In
another case an off-nominal scenario was identified in

Category ODC Target ODC Type
Incomplete
requirements
and software
fix

“Flight Software” “Function
Algorithm”
(primarily)

Unexepcted
requirement
interactions
and procedural
fix

“Information
Development”

“Missing
Procedures”
or
“Procedures
Not
Followed”

Requirements
confusion and
documentation
fix

“Information
Development”

“Documen-
tation” or
“Procedure”

Requirements
confusion and
no fix

“None/Unknown” “Nothing
Fixed”

New-S/W fix
New-

Procedure Confusion-
Doc Confusion-

None

Ops

Test

Total

46

10

8

26

35

3 5

22

11

7

3 40

5

10

15

20

25

30

35

40

45

50

Requirements Classification

N
u

m
b

er

testing in which certain interfaces had to be
temporarily disabled to achieve correct behavior. In a
third anomaly, analysis of the problem revealed a
requirement to re-enable a reset driver during a reboot.

 In operations, there were forty-four anomaly reports
with ODC Target = “Flight Software.” Eleven of these
involved missing or incomplete requirements. In four
cases a new software requirement compensated for the
failure or degradation of a hardware component. For
example, when a damaged solar array could not deploy
correctly, a new flight software requirement added
needed functionality in response. In another anomaly,
noisy transducers caused excessive resetting of
hardware components, a risk to the system. In
response, a new flight software requirement
compensated for the noise.

 In seven other cases the anomaly was handled by a
new software requirement to handle an unusual event
or scenario. In these cases the requirements discovery
involved unforeseen system behavior that was resolved
by requiring additional fault tolerance for similar,
future incidents. In one anomaly, for example, an
unexpected outflow of debris temporarily blinded the
spacecraft, making it difficult to determine its position
in space. As a consequence of the anomaly, new
software requirements were implemented to make the
spacecraft robust against similar events in the future.

 In both testing and operations, requirements
discovery was often resolved by changes to software in
the systems studied. In testing, new requirements
emerged most often from subtle dependencies among
software components or between the software and the
hardware. In operations, rare scenarios or hardware
degradations caused critical anomalies resolved by
urgent, unplanned software requirements changes.

3.2. Unexpected requirements interactions,
resolved by changes to operational procedures

 The second mechanism for requirements discovery
also involves new requirements, but in these cases the
new requirement is implemented via an operational
procedure. Such anomalies usually involve unexpected
requirements interactions detected during testing or
operations. Analysis of the anomaly sometimes results
in a new requirement that certain activities be
performed in a specific order (e.g., to prevent a race
condition) or in a specific timing relationship. The
change made to resolve the anomaly in the cases
described here is not to the software but to the
procedures.

 In testing there were eighteen anomaly reports with
ODC Target = “Information Development” and ODC
Type = “Missing or Incomplete Procedure.” Of these,

there were three anomaly reports that displayed this
mechanism. For example, in one case, a software fault
monitor issued redundant off commands from a
particular state reached during testing. Although this
software behavior was correct, it was undesirable. A
decision was made to prevent these redundant
commands by procedurally selecting limits that would
avoid that state in the future.

 In post-launch operations there were seven critical
anomalies with ODC Target = “Information
Development” and ODC Type = “Procedure.” In each
case the new requirements knowledge was
implemented by a procedure.

 For example, one anomaly identified a need to be
able to recover the commands remaining to be
executed after an abnormal termination occurred. This
requirement was resolved by creation of a new
operational procedure to respond to similar situations
in the future. In another case a problem occurred when
two streams of data were sent simultaneously. The
anomaly revealed a latent requirement that had not
been previously recognized to ensure that only one
stream of data at a time be transferred. Again, this
was handled procedurally. In a third anomaly the
software behavior was incorrect in that an aero-braking
maneuver (to lower the periapse) was erroneously
performed twice rather than once. This occurred when
the software was loaded to memory too soon, i.e., to an
area of memory that was currently active. The fix was
to add a procedure to enforce a new requirement
preventing the recurrence of the configuration problem.

 Handling a new requirement via a procedural change
avoids the cost and risk of updating complex, safety-
critical flight software. However, it introduces the risk
that operational personnel may not imp lement the
procedure every time a similar situation occurs.
Resolution of critical anomalies such as these via
changes to procedures places high dependence on the
requirements knowledge and motivation of the
operational personnel.

 The anticipated length of a system’s lifetime may be
a factor in the decision as to whether to handle an
emergent requirement procedurally or not. For a
relatively short-lived system (e.g., a mission to Mars,
measured in months) a change to operational
procedures may make sense. For a relatively long-
lived system (e.g., a seven-year trip to Saturn followed
by a multi-year scientific mission), there will inevitably
be personnel turnover and ensuing loss of requirements
knowledge. For a long-lived system, procedural
implementations of requirements may add risk.

3.3 Requirements confusion, resolved by
changes to documentation

 In both of the first two mechanisms for requirements
discovery, the anomaly report reveals the existence of a
new requirement or of a newly understood dependency
among requirements. In the first mechanism the
anomaly results in a change to software. In the second
mechanism the anomaly results in a change to
operational procedures to enforce the correct behavior
of the system. The third and fourth mechanisms differ
from the first two in that the third and fourth involve
the discovery of a requirements confusion rather than
the discovery of a missing or incomplete requirement.
In these cases, the software works correctly, but the
testing or operational personnel are surprised by this
behavior.

 In the third mechanism the anomaly is resolved by
fixing the documentation (e.g., the list of flight rules or
the design document) to explain the required behavior
and the requirements rationale. Analysis of problem
reports from testing showed sixteen anomalies with an
ODC Target = “Information Development” and an
ODC Type = “Documentation.” Five of these involved
incorrect assumptions about the requirements on the
part of the testers. These misunderstandings were
made manifest during testing when correct software
behavior did not match the testers’ expectation. Such
testing reports were handled by correcting the source of
the misunderstanding via improved documentation.

 For example, one anomaly was caused by an
incorrect assumption by testing personnel that some
heaters would remain off as the software transitioned
between two specific modes. The anomaly was
resolved by correcting the design documentation to
describe the software requirement implemented by
another component to turn the heaters off when this
transition occurred.

 Requirements confusion also caused critical
operational anomalies in the systems studied. Analysis
identified three such anomalies with an ODC signature
of Target = “Information Development” and Type =
“Documentation.” Of these, one anomaly involved
requirements confusion. In that case, the anomaly
reported a drop in battery power resulting from a
requirements misunderstanding of the behavior
initiated by the command that was used. The corrective
action taken was to document the required behavior
and associated command in an operational flight rule.

 Unlike in testing, anomalies caused by requirements
confusion also occasionally resulted in the improved
documentation of a procedure. Two of the forty-six
critical operational anomalies with Target =

“Information Development” and Type = “Procedure”
involved the correction of a requirements
misunderstanding through the documentation of
procedures. In these cases there was no new
requirement (unlike in mechanism 2) but instead
improved communication of a known constraint. For
example, in one anomaly a required precondition for a
calibration (that the instrument be in an inertial mode)
was not understood. The problem was avoided in
future calibrations by documenting this requirement in
the systems checklist.

 3.4 Requirements confusion, resolved without
change

 As in the previous mechanism, the cause of these
anomalies is requirements misunderstanding.
However, in mechanism 4 no fix is made. There were
sixty-seven testing anomalies with ODC Target =
“None/Unknown” and ODC Type = “Nothing Fixed.”
Such anomaly reports are false positives, reporting a
problem when, in fact, the software behaved correctly
and in accordance with the specified requirements. In
these anomalies the projects subsequently determined
that no change was needed. For example, in some
cases no change was made because the situation could
not recur in the rest of the mission.

 In most cases, resolution of the anomaly report
without a fix was appropriate. However, analysis of
testing problem reports shows that in some anomalies
with this ODC signature, the same requirements
confusion might be able to recur in operations. In such
cases, the requirements misunderstanding on the part of
the testing personnel might be repeated by operational
personnel, yielding a perhaps serious operational
anomaly. .For example, in one scenario the software
declared a cold boot even though a warm boot had
occurred. This behavior is required, but the rationale is
somewhat complicated and merits further
documentation to preclude similar confusion.

 In another testing incident the tester expected that
commands issued to a component when it was off
would be rejected. Instead, the commands
unexpectedly executed when the component was
rebooted. This behavior was, in fact, required, but
(reasonably) was not the behavior expected by the
tester. Since this misunderstanding might be able to
recur in operations with serious effect, it is worth the
effort to record the software’s actual behavior to help
reduce gaps between expected and actual performance.

 Similarly, there were four cases of requirements
confusion in operations that warranted clarification in
the documentation to avoid future anomalies due to the
same requirements confusion. In one anomaly report a

defect was caused by the counterintuitive use of the
words “deploy” and “stow.” In this case “deploy” was
synonymous with “close an instrument cover” and
“stow” was synonymous with “open or remove the
instrument cover.” The potential for confusion
regarding the required software behavior when the
instrument cover had to be moved was thus quite high.
In another case a rare situation was found in which a
parity error could be missed in a certain combination of
circumstances. A decision was reasonably made not to
fix it on this system due to resource constraints.
However, since the problematic configuration is also
possible with other systems, further documentation for
future, similar systems is recommended.

 Interestingly, in all four of these anomalies the lack
of corrective action to remedy the requirements
misunderstanding was judged by the projects to suffice
for the system on which it occurred. However, in all
four cases it was noted in the anomaly report that the
misunderstanding could also occur on other, future
spacecraft. That is, the requirements misunderstanding
in each case was perceived as a recurrent risk on other
systems. This focus on the next -generation systems by
operational personnel suggests a need in defect analysis
to broaden the perspective from consideration of a
single system to consideration of a set, or family, of
similar systems (in this case, interplanetary spacecraft).
These results suggest the possibility that better reuse of
knowledge regarding past requirements confusions
may forestall similar requirements confusions on other
systems in the same product family

4. Implications for testing and operations

The experience reported here indicates that similar
mechanisms for requirements discovery occur in
testing and operations.

4.1 Minor differences between phases

 The two ways in which requirements discovery and
resolution differ in testing and operations were minor.
First, in testing the anomaly reports studied sometimes
resulted in procedural changes, but they did not result
in fuller documentation of existing procedures.
However, in operations anomalies involving
requirements confusions sometimes led to improved
documentation of procedures (without any procedural
changes). Since the testing defects were drawn from
one project and the operational defects from seven,
further data is needed to draw any conclusion.

 The second way in which requirements discovery
differed in the two phases was that in testing the focus
of the anomaly reports was on the system under test.

In operations the focus of the anomaly reports
broadened to consider implications for similar, future
systems.

 4.2 Identifying risks for similar systems

 As described above, when a requirements confusion
was perceived as possibly recurring on other, similar
spacecraft, the operational analyst often logged this
concern for the future. A lesson learned that emerged
from this study was that valuable pointers to possible
risks on similar systems by knowledgeable, operational
personnel should be stored so as to be readily
retrievable in the future. How to best capture and
maintain these indicators of future risk for the product
family is an open problem.

4.3 Procedures satisfy constraints on
requirement interactions

 Both testing and operational anomalies revealed a
dependence on procedures to achieve some newly
identified requirement interactions. Especially for
critical anomalies, allocation of requirements to
procedures carries the risk that the procedure will not
be carried out correctly on each occasion when the
situation requires it. This concern reflects the number
of times that the ODC Type for anomalies was
“procedures not followed.” Procedures also tend to be
written largely in natural language, making rigorous
analysis less likely.

 Procedures often enforce requirements for
sequentiality of actions or preconditions for correct
software behavior. This suggests that explicit
traceability from requirements to procedures be
maintained. Similarly, a domain (or product-family)-
specific checklist of requirements commonly handled
by procedures in this domain (e.g., calibrate before use)
might reduce the number of anomalies due to missing
or incomplete procedures.

4.4 Patterns of requirements confusion

 Certain types of requirements misunderstandings
recur in the anomaly reports, suggesting that they may
be frequent sources of confusion. How best to identify
and target this subset of requirements (e.g., for
improved specification or extra validation) merits
study.

 Some examples of recurring requirements confusion
are evident from analysis of the anomalies. For
example, in situations where both high-water marks
(which record the highest value reached since the last
reset) and counters (that may be reset periodically or

aperiodically) are relevant, the exact meaning of their
values is sometimes mistaken. Persistence counts for
high-water marks (how long has this value been the
highest?), for example, caused multiple confusions.

 Requirements misunderstandings between relative
time measurements (deltas) and absolute time
measurements (e.g., Universal Time Code) and resets
can also occur. Another example of recurring
requirements misunderstanding involves the distinction
between software timing delays required by interface
delays or transients and by “inherent,” performance-
related delays.

 With respect to states, distinguishing component
unavailability from component unresponsiveness also
caused requirements-based misunderstandings. This
confusion is of concern because it is often involved in
health checks to detect and diagnose faulty states. The
relationship between instrument states and software
modes (e.g., is the heater always on in this mode?), as
well as the precise relationship between redundant data
(e.g., commands or warning messages) and redundant
actions were sometimes quite subtle.

 Work is needed in this area both to identify
additional patterns of requirements confusion and to
develop practical means of clarifying these patterns for
the testing and operational personnel. Understanding
of the requirements by the developers promotes correct
software, but is only half of the story. Understanding
of the requirements by the testing and operational
teams is also needed for the correct use and functioning
of the software.

5. Related work

 The work on requirements discovery described here
draws from or has implications for work in three areas:
requirements evolution, requirements-related defect
analysis, and goal-obstacle analysis.

 Requirements discovery consists of both new
requirements and of new knowledge about existing
requirements. With respect to new requirements, there
is a significant body of work in the area of
requirements evolution. Many large or long-lived
systems have requirements that evolve even after
deployment to adapt to changes in user needs,
hardware or software platforms, environmental factors,
or policies (e.g., certification or legislation) [1,8]. In
earlier work we showed that requirements also evolve
during operations to compensate for hardware
degradation or to add robustness when rare scenarios
occur [12].

 Most studies of requirements evolution consider the
problems involved in what Dubois and Pohl have

recently called “continuous requirements management”
[4]. The focus is on establishing processes to specify
and scope proposed changes to requirements. However,
most of that work deals with new requirements rather
than, as here, with identifying and recovering from
incomplete or misunderstood requirements.

 Requirements discovery during operations also
involves new knowledge about existing requirements,
and their dependencies, interactions with the system, or
constraints. Defect analysis results in in this area have
tended to concentrate on requirements in systems under
development rather than on operational systems. For
example, defect analysis during testing has been used
to evaluate the readiness of the software for release or
to estimate the reliability of the software [6]. Fenton
and Ohlsson have described the problems in using
defect analysis results to measure the quality of
deployed software [5]. Dalal, Hamada, Matthews, and
Patton have used ODC in operational systems but with
the purpose of guiding pre-release process
improvement [3]. More recently, Ostrand and Weyuker
have compared pre and post-release faults in an
investigation of module fault density and fault-
proneness [14]. Unlike the systems studied here, they
found very few (ten) high-severity post-release faults in
thirteen releases of an inventory-tracking system and
did not study fault causes.

 Defect analysis has shown that misunderstanding of
requirements and their underlying rationales frequently
cause defects. Lauesen and Vinter, for example,
looked at 200 of the 800 defect reports available a few
months after a product’s release. They found that
about half of the defect reports involved requirements
defects, with missing requirements being the most-
frequent cause [9]. Similarly, in an earlier study of
testing defects in the spacecraft domain, one of the
authors found that the most common causes of critical
software defects were misunderstanding the software’s
interfaces with the system and discrepancies between
documented requirements and actual requirements [1].

 As mentioned earlier, the work described here differs
from this previous work in that, by looking at anomaly
reports rather than just defect reports, we can more
accurately gauge the role of requirements confusions.
As we have seen, false-positive reports of problems
(where the software behaves correctly but
unexpectedly) are common and reveal latent
misunderstandings.

 This is important because requirements
misunderstandings have been frequently cited as the
source of many accidents [16]. Hanks, Knight, and
Strunk have specifically implicated breakdowns in the
communication of domain knowledge as a major cause
of requirements defects in high-assurance systems [7].

In summarizing the results of a large defect-analysis
study, Leszak, Perry and Stoll state that “domain and
system knowledge continue to be one of the largest
underlying problems in software development [10].”

 The third area of related work is goal-obstacle
analysis. Anomaly reports are written to document
perceived obstacles to the achievement of required
behavior. The list of ODC targets (what gets fixed)
describes common ways to handle the obstacles. The
results reported here provide some experience-based
confirmation of the importance of some classes and
subclasses of obstacles described by van Lamsweerde
and Letier [15].

 Obstacle analysis supports the notion that if a
requirements misunderstanding can be an obstacle to
the satisfaction of some future goal, then it merits
resolution (e.g., documentation) to prevent that. Van
Lamsweerde and Letier identified “Wrong Belief” as a
possible obstacle to meeting system goals. “Wrong
Belief” occurs when “the necessary information about
the object state as recorded in the agent’s memory is
different from the actual state of the object.” The
Wrong Belief obstacle class is further refined into
subclasses, such as Information Outdated, Information
Confusion, Information Forgotten, Wrong Inference,
Wrong Information Provided, and Information
Corrupted.

 We found occurrences in the post-launch critical
anomalies of the first four of the six Wrong Belief
subclasses listed above. We also identified a possible
new subclass by analysis of the anomaly reports. This
new subclass would be “Information Not Used,” which
we define as “information available to agent not used.”
As an example, in one case a flight rule constraint was
available but was not used. This differs from the
existing “Information Forgotten” subclass, which is
defined as “information no longer available.”

 The four mechanisms for requirements discovery and
resolution during testing and operations appear to be
largely consistent with the framework for obstacle
analysis during the requirements phas e described in
[15]. Requirements discovery resolved by
implementing a new requirement in software
(Mechanism 1) either adds a new goal or changes a
goal in order to mitigate an obstacle. Requirements
discovery resolved by changing the operational
procedures (as when a newly understood required
sequencing of interleaved activities is provided
operationally) (Mechanism 2) often shifts the
responsibility for a goal from the software to another
agent (i.e., the procedure). In long-lived systems such
shifts of goal implementation are common [12]. In
particular, we have found that as hardware degrades the

software is often allocated compensatory new
requirements.

 Requirements misunderstanding describes situations
in which the requirements are correct but the required
behavior is unexpected. Reducing occurrences of the
obstacle in such cases may entail changes to the
documentation to prevent the requirements
misunderstanding on this or future systems
(Mechanism 3). Finally, van Lamsweerde and Letier
describe the option to just tolerate the obstacle. In this
case a decision (perhaps unwise) has been made that no
change is necessary (Mechanism 4). The experience
reported here confirms the value of continued
requirements-engineering activities as long as
requirements discovery continues, i.e., into testing and
operations, for complex, critical systems such as these.

 6. Conclusion

 The results reported here show that requirements
discovery continued to cause anomalies during both
testing and operations in the systems studied.
Furthermore, very similar mechanisms for
requirements discovery and resolution were at work in
both testing and operations.

 By understanding how requirements confusions
contribute to anomalies, we hope to reduce their
incidence during operations. Resolving and
documenting requirements confusions in testing may
prevent recurrence of some of those confusions during
operations.

 The findings suggest some patterns in what confuses
people, at least within the spacecraft domain. It is an
open question whether the same confusions that occur
in testing will, if left uncorrected, recur in operations.
Understandably, no project has volunteered to test this
hypothesis. However, we have seen that some
anomalies do recur. One tes ting anomaly report even
referred to the “rediscovery” of the requirements
knowledge it documented.

 Given the attention that people writing the anomaly
reports accord to future systems in their comments, it
also appears that documenting requirements confusions
in operations may have value in preventing some
recurrences of those confusions on similar, future
systems. That is, in the testing phase the goal is to
document requirements confusions sufficiently to
prevent recurrence of the confusion in the operational
phase of that system. In the operational phase, the goal
is to document requirements confusions sufficiently to
prevent recurrence on this or similar future systems.

Acknowledgments. The authors thank Daniel
Erickson and the Mars Exploration Rover engineers
and test teams for their assistance and feedback.

References

 [1] K. H. Bennett and V. T. Tajlich, “Software Maintenance
and Evolution: a Roadmap,” in A. Finkelstein, ed. The
Future of Software Engineering. ACM Press, New York,
2000.

 [2] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday,
D. S. Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal
Defect Classification—A Concept for In-Process
Measurements, IEEE Trans on SW Eng, Nov. 1992, pp. 943-
956.

[3] S. Dalal, M. Hamada, P. Matthews, and G. Patton, “Using
Defect Patterns to Uncover Opportunities for Improvement,”
Proc. Int’l Conf Applications of Software Measurement,
1999.

[4] E. Dubois and K. Pohl, “RE 02: A Major Step toward a
Mature Requirements Engineering Community,” IEEE
Software, vol. 20, no. 1, Jan/Feb, 2003, pp. 14-15.

[5] N. E. Fenton and N. Ohlsson, “Quantitative Analysis of
Faults and Failures in a Complex Software System,” IEEE
Trans on Software Eng, vol. 26, no. 8, Aug, 200, pp. 797-
814.

[6] S. Gardiner, ed. Testing Safety-Critical Software,
Springer-Verlag, London, 1999.

[7] K. S. Hanks, J. C. Knight, and E. A. Strunk, “Erroneous
Requirements: A Linguistic Basis for Their Occurrence and
an Approach to Their Reduction,” Proc. 26th NASA Goddard
Software Eng Workshop, IEEE, Greenbelt, MD, Nov., 2001.

[8] S. D. P. Harker, K. D. Eason, and J. E. Dobson, “The
Change and Evolution of Requirements as a Challenge to the
Practice of Software Engineering,” Proc. IEEE Intl Symp on
Requirements Eng, IEEE Computer Society, Los Alamitos,
CA, 1992, pp. 266-272.

 [9] S. Lauesen and O. Vinter, “Preventing Requirements
Defects: An Experiment in Process Improvement,”
Requirements Engineering Journal, 2001, pp. 37-50.

[10] M. Leszak, D.E. Perry and D. Stoll, “Classification and
Evaluation of Defects in a Project Retrospective,” The
Journal of Systems and Software, vol. 61, issue 3, 1 April,
2002, pp. 173-187.

 [11] R. Lutz, “Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems,” Proc IEEE Intl Symp
Req Eng, IEEE CS Press, 1993, pp. 126-133.

[12] R. Lutz and I. C. Mikulski, “Operational Anomalies as a
Cause of Safety-Critical Requirements Evolution,” The

Journal of Systems and Software, to appear.

[13] R. Lutz and I. C. Mikulski, “Requirements Discovery
during the Testing of Safety-Critical Software,” Proc of Int’l
Conf on Software Eng, 2003, to appear..

[14] T. J. Ostrand and E. J. Weyuker, “The Distribution of
Faults in a Large Industrial Software System,” Proc Int’l
Symp on Software Testing and Analysis, in Software
Engineering Notes, July, 2002, pp. 55-64

[15] A. van Lamsweerde and E. Letier, “Handling Obstacles
in Goal-Oriented Requirements Engineering,” IEEE Trans
on Software Eng, vol. 26, no. 10, Oct. 2000, pp. 978-1005.

[16] K. A. Weiss, N. Leveson, K. Lundqvist, N. Farid, and
M. Stringfellow, “An Analysis of Causation in Aerospace
Accidents,” Space, 2001, Aug., 2001.

