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Abstract 
 
This paper describes the results of an investigation into 
requirements discovery during testing and operations.  
Requirements discovery includes both new 
requirements and new knowledge regarding existing 
requirements. Analysis of anomaly reports shows that 
many of the anomalies that occur during these phases 
involve requirements discovery.  Previous work by the 
authors identified four common mechanisms for 
requirements discovery and resolution during testing. 
The results reported here extend that work in two 
ways:  (1) to show that very similar requirements-
discovery mechanisms are at work in both testing and 
operations, and (2) to evaluate the requirements-
discovery mechanisms against experience with seven 
additional systems.   The paper discusses the 
consequences of these classifications and results in 
terms of reducing requirements-based defects in 
critical, embedded systems.  Keywords:  requirements 
discovery, requirements evolution, defect analysis, 
safety-critical systems, testing, operations. 
   
1.  Introduction  
 
    For many critical, embedded systems, software 
requirements continue to be discovered throughout the 
system’s lifetime.  The work described in this paper 
investigates requirements discovery during the later 
phases of projects, in  particular during testing and 
operations.  Analysis of anomaly reports during testing 
and operations shows that many of the anomalies  
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during these phases involve software requirements 
discovery.  Stated in another way, incomplete 
requirements and requirements misunderstandings are 
the source of many testing and operational anomalies. 

    Requirements discovery includes both new 
requirements and new knowledge regarding existing 
requirements that emerge during testing and operations.   
We are interested here in understanding more precisely 
what types of requirements discovery occur in systems 
after they are built and what types of resolution occur 
to handle these requirements-related anomalies.  To 
achieve this we analyze software anomaly reports in 
order to characterize patterns of requirements 
discovery and resolution. 

    In previous work [13] we identified four common 
mechanisms for requirements discovery and resolution 
during the integration and system testing of a safety-
critical system: 

• Incomplete requirements, resolved by changes 
to the software 

• Unexpected requirements interactions, 
resolved by changes to the operational 
procedures   

• Requirements confusion on the part of the 
testing personnel, resolved by changes to the 
documentation, and   

• Requirements confusion on the part of the 
testing personnel, resolved by a decision that 
no change was needed.  

    In this paper we evaluate these four mechanisms for 
requirements discovery and resolution on operational 
(i.e., deployed) systems.  The results reported here 
extend the previous work in two ways: (1) to show that 
very similar requirements-discovery mechanisms are at 
work in both testing and operations, and (2) to evaluate 
the requirements-discovery mechanisms against 
experience with seven additional systems.  

 



   The paper also discusses the consequences of these 
classifications and results in terms of reducing 
requirements-based defects in critical, embedded 
systems .  Specifically, the experience reported here 
showed: 

• that both testing and operational anomalies 
reveal a dependence on procedures to satisfy 
some newly identified requirement 
interactions, such as required sequencings of 
activities,  

• that anomaly reports for one system can 
identify requirements-related risk for similar, 
future systems, 

• that “false-positive” anomaly reports, where 
the software behavior is actually correct but is 
unexpected, provide valuable insights into 
requirements confusions,  

• and that analysis of anomaly reports allows us 
to pinpoint some recurring patterns of 
requirements confusion. 

    The rest of the paper is organized as follows.  
Section 2 describes the approach used to analyze the 
anomalies.  Section 3 presents and evaluates the 
results.  Section 4 discusses the implications of these 
results and derives some lessons learned.  Section 5 
puts the results in the context of recent, related work.  
Section 6 provides concluding remarks and identifies 
some open questions. 
 
2. Approach 
 
    The approach to the work reported here was to 
analyze the anomaly reports generated during testing 
and operations to gain insight into requirements 
problems.  These data are contained in an institutional, 
multi-project, on-line database.  Although the on-line 
forms differ somewhat for testing and operations, the 
forms are similar.  Both contain the following three 
parts: a description of the problem, a subsequent 
analysis of the problem, and a description of the 
corrective action taken to close out the anomaly report.  

    The testing dataset consisted of 326 filled-in 
software anomaly reports written during integration 
and system testing for the twin Mars Exploration Rover 
(MER) spacecraft currently under development for 
launch in summer, 2003.  This more than doubles the 
number of testing anomaly reports analyzed in the 
initial set [13] and includes data up to mid -December, 
2002.    MER will explore Mars with two robotic 
rovers equipped to search for, among other things, 
evidence of past water.  

    The operational dataset consisted of  the 189 
anomaly reports in the highest-criticality level 
generated post-deployment by the operations teams on 

seven other spacecraft. Operational data were analyzed 
for the following recent or current spacecraft:  the 
Galileo mission to Jupiter, launched in 1989; Mars 
Global Surveyor, launched in 1996; Cassini/Huygens, 
launched in 1997 to Saturn and Titan; Deep Space 1, an 
ion-propulsion and remote-agent technology mission, 
launched in 1998; Mars Climate Orbiter, launched 
in1998; Mars Polar Lander, launched in 1999; and 
Stardust, a comet sample -return mission, also launched 
in 1999.   

   The anomaly reports document not only defects but 
any behavior that is unexpected by the testing or 
operational personnel.  The anomaly reports are thus a 
rich source of discovery of both latent requirements 
(where the software does not behave correctly in some 
situation) and of requirements confusion (where the 
software behaves correctly but unexpectedly).   

   The method of analysis for the anomaly reports is an 
adaptation of Orthogonal Defect Classification 
(ODC)[2]. ODC provides a way to “extract signatures 
from defects” and to correlate the defects to attributes 
of the development process.   

   The ODC-based approach uses four attributes to 
characterize each anomaly report.  The first is the 
Activity, which describes when the anomaly occurred 
(e.g., System Test or Flight Operations).  The Trigger 
describes the environment or condition that had to exist 
for the anomaly to surface (e.g., a Fault Recovery 
condition or Hardware/Software interaction).  The 
Target characterizes the high-level entity that was fixed 
in response to the anomaly’s occurrence (e.g., Flight 
Software or Information Development).  Finally, the 
Type describes at a lower-level the actual fix that was 
made (e.g., Documentation, Procedure, or 
Function/Algorithm).  Table 1 lists the ODC signatures 
extracted for the requirements-discovery investigation. 

   Each anomaly was classified twice, once by each of 
the two authors. If there were discrepancies between 
these two classifications, they were reconciled in joint 
discussions.  Both authors have experience on flight 
projects at JPL, but neither is involved with the testing 
or operations of the systems under study. Spacecraft 
personnel, especially on MER, generously assisted us 
by answering domain and process questions. A fuller 
description of the classification process appears in [12].   

   While all available test anomalies were analyzed, only 
the critical operational anomaly reports were analyzed.  
By “critical” we mean that the anomaly was ranked by 
the project as highly critical.  Depending on the fields 
used by the project in their reporting, such anomalies 
were thus marked as “red-flag,” “potential-red-flag,” 
“high-criticality,” or “significant or catastrophic failure 
effect risk.” Criticality ratings currently existed for only 



a small subset of the testing reports, so criticality 
ratings were not useful for analysis of the testing 
anomalies.  

   The fact that the same requirements-discovery 
mechanisms evident in testing caused critical software 
anomalies post-launch motivate continuing 
investigation in this area.  The goal of the multi-year 
study in which this work is embedded is to reduce the 
number of safety-critical software anomalies that occur 
after launch.  

 
Table 1. ODC signatures investigated 

 
3.  Results and analysis 
 
   The results of the ODC analysis of the testing and 
operational datasets showed that the mechanisms for 
requirements discovery are very similar across both the 
testing and the operations phases.  Figure 1 summarizes 
the results.  It shows that 65 of the 326 testing 
anomalies and 25 of the 189 critical operational 
anomalies involve the requirements mechanisms 
identified here.   The following subsections describe 
each of those four mechanisms with a discussion of  
the ODC analyses for both the testing and the 
operational datasets.  Because some of the testing work 
has been previously reported in [13], we describe it 
only in enough detail to understand the comparison 
with operations.  Because the requirements discovery 
work in operations is new, we describe it more fully. 

Figure 2. Classification of anomaly reports  
 
3.1 Incomplete requirements, resolved by 
changes to software  
 
   The first mechanism for requirements discovery is 
incomplete or missing requirements resolved by 
changes to the software.  In these cases an anomaly 
report is written during testing or operations.  This 
anomaly involves or results in the discovery of new 
requirements knowledge.  The corrective action taken 
to fix the anomaly is to implement the new requirement 
in the onboard flight software.  

   Excluded from this class of requirements discovery 
are requirements involved in the planned evolution or 
scheduled maintenance of the system.  Although these 
activities routinely involve new requirements, these 
new requirements are not anomaly -driven and do not 
reflect requirements discovery in the same way. 
Software is regularly uploaded to the spacecraft before 
a new mission phase to control the activities associated 
with that new phase.  For example, as the mission 
passes from cruise to planetary encounter, new 
software requirements will be implemented in the flight 
software.  However, these planned updates do not 
routinely reflect the discovery of new requirements. 
This contrasts with the unplanned changes to 
requirements prompted by critical anomalies during 
operations that are studied here. 

   In testing, there were 160 anomaly reports with an 
ODC Target of “Flight Software.”  The ODC Target 
describes what was fixed.  Thirty-five of these involved 
incomplete or missing requirements resolved by 
changes to the software.  These missing requirements 
were either unidentified or new requirements.  Many of 
these describe timing or initialization issues arising 
from the interaction among software components or 
between software and hardware.  For exa mple, in one 
such anomaly a new requirement became evident 
during testing for the initial state for a component to 
wait for completion of the initial move of a motor.  In 
another case an off-nominal scenario was identified in 
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testing in which certain interfaces had to be 
temporarily disabled to achieve correct behavior.  In a 
third anomaly, analysis of the problem revealed a 
requirement to re-enable a reset driver during a reboot.   

   In operations, there were forty-four anomaly reports 
with ODC Target = “Flight Software.” Eleven of these 
involved missing or incomplete requirements.  In four 
cases a new software requirement compensated for the 
failure or degradation of a hardware component.  For 
example, when a damaged solar array could not deploy 
correctly, a new flight software requirement added 
needed functionality in response. In another anomaly, 
noisy transducers caused excessive resetting of 
hardware components, a risk to the system.  In 
response, a new flight software requirement 
compensated for the noise.  

   In seven other cases the anomaly was handled by a 
new software requirement to handle an unusual event 
or scenario.  In these cases the requirements discovery 
involved unforeseen system behavior that was resolved 
by requiring additional fault tolerance for similar, 
future incidents.  In one anomaly, for example, an 
unexpected outflow of debris temporarily blinded the 
spacecraft, making it difficult to determine its position 
in space.  As a consequence of the anomaly, new 
software requirements were implemented to make the 
spacecraft robust against similar events in the future.    

   In both testing and operations, requirements 
discovery was often resolved by changes to software in 
the systems studied.  In testing, new requirements 
emerged most often from subtle dependencies among 
software components or between the software and the 
hardware.  In operations, rare scenarios or hardware 
degradations caused critical anomalies resolved by 
urgent, unplanned software requirements changes. 
 
3.2. Unexpected requirements interactions, 
resolved by changes to operational procedures 
 
   The second mechanism for requirements discovery 
also involves new requirements, but in these cases the 
new requirement is implemented via an operational 
procedure.  Such anomalies usually involve unexpected 
requirements interactions detected during testing or 
operations. Analysis of the anomaly sometimes results 
in a new requirement that certain activities be 
performed in a specific order (e.g., to prevent a race 
condition) or in a specific timing relationship.  The 
change made to resolve the anomaly in the cases 
described here is not to the software but to the 
procedures.   

   In testing there were eighteen anomaly reports with 
ODC Target = “Information Development” and ODC 
Type = “Missing or Incomplete Procedure.”  Of these, 

there were three anomaly reports that displayed this 
mechanism. For example, in one case, a software fault 
monitor issued redundant off commands from a 
particular state reached during testing.  Although this 
software behavior was correct, it was undesirable.  A 
decision was made to prevent these redundant 
commands by procedurally selecting limits that would 
avoid  that state in the future. 

   In post-launch operations there were seven critical 
anomalies with ODC Target = “Information 
Development” and ODC Type = “Procedure.” In each  
case the new requirements knowledge was 
implemented by a procedure.  

    For example, one anomaly identified a need to be 
able to recover the commands remaining to be 
executed after an abnormal termination occurred.  This 
requirement was resolved by creation of a new 
operational procedure to respond to similar situations 
in the future.  In another case a problem occurred when 
two streams of data were sent simultaneously.  The 
anomaly revealed a latent requirement that had not 
been previously recognized to ensure that only one 
stream of data at a time be transferred.   Again, this 
was handled procedurally.  In a third anomaly the 
software behavior was incorrect in that an aero-braking 
maneuver (to lower the periapse) was erroneously 
performed twice rather than once.  This occurred when 
the software was loaded to memory too soon, i.e., to an 
area of memory that was currently active.  The fix was 
to add a procedure to enforce a new requirement 
preventing the recurrence of the configuration problem. 

   Handling a new requirement via a procedural change 
avoids the cost and risk of updating complex, safety-
critical flight software.  However, it introduces the risk 
that operational personnel may not imp lement the 
procedure every time a similar situation occurs.  
Resolution of critical anomalies such as these via 
changes to procedures places high dependence on the 
requirements knowledge and motivation of the 
operational personnel.   

   The anticipated length of a system’s lifetime may be 
a factor in the decision as to whether to handle an 
emergent requirement procedurally or not.  For a 
relatively short-lived system (e.g., a mission to Mars, 
measured in months) a change to operational 
procedures may make sense.  For a relatively long-
lived system (e.g., a seven-year trip to Saturn followed 
by a multi-year scientific mission), there will inevitably 
be personnel turnover and ensuing loss of requirements 
knowledge. For a long-lived system, procedural 
implementations of requirements may add risk. 
 
 



3.3 Requirements confusion, resolved by 
changes to documentation 
 
   In both of the first two mechanisms for requirements 
discovery, the anomaly report reveals the existence of a 
new requirement or of a newly understood dependency 
among requirements. In the first mechanism the 
anomaly results in a change to software.  In the second 
mechanism the anomaly results in a change to 
operational procedures to enforce the correct behavior 
of the system.  The third and fourth mechanisms differ 
from the first two in that the third and fourth involve 
the discovery of a requirements confusion rather than 
the discovery of a missing or incomplete requirement.   
In these cases, the software works correctly, but the 
testing or operational personnel are surprised by this 
behavior.   

   In the third mechanism the anomaly is resolved by 
fixing the documentation (e.g., the list of flight rules or 
the design document) to explain the required behavior 
and the requirements rationale. Analysis of problem 
reports from testing showed sixteen anomalies with an 
ODC Target = “Information Development” and an 
ODC Type = “Documentation.”  Five of these involved 
incorrect assumptions about the requirements on the 
part of the testers.  These misunderstandings were 
made manifest during testing when correct software 
behavior did not match the testers’ expectation. Such 
testing reports were handled by correcting the source of 
the misunderstanding via improved documentation.  

   For example, one anomaly was caused by an 
incorrect assumption by testing personnel that some 
heaters would remain off as the software transitioned 
between two specific modes.  The anomaly was 
resolved by correcting the design documentation to 
describe the software requirement implemented by 
another component to turn the heaters off when this 
transition occurred.  

   Requirements confusion also caused critical 
operational anomalies in the systems studied.  Analysis 
identified three such anomalies with an ODC signature 
of Target = “Information Development” and Type = 
“Documentation.”  Of these, one anomaly involved 
requirements confusion.  In that case, the anomaly 
reported a drop in battery power resulting from a 
requirements misunderstanding of the behavior 
initiated by the command that was used. The corrective 
action taken was to document the required behavior 
and associated command in an operational flight rule. 

   Unlike in testing, anomalies caused by requirements 
confusion also occasionally resulted in the improved 
documentation of a procedure.  Two of the forty-six 
critical operational anomalies with Target = 

“Information Development” and Type = “Procedure” 
involved the correction of a requirements 
misunderstanding through the documentation of 
procedures.   In these cases there was no new 
requirement (unlike in mechanism 2) but instead 
improved communication of a known constraint.  For 
example, in one anomaly a required precondition for a 
calibration (that the instrument be in an inertial mode) 
was not understood.  The problem was avoided in 
future calibrations by documenting this requirement in 
the systems checklist. 
 
 3.4 Requirements confusion, resolved without 
change  
 
   As in the previous mechanism, the cause of these 
anomalies is requirements misunderstanding.  
However, in mechanism 4 no fix is made.  There were 
sixty-seven testing anomalies with ODC Target = 
“None/Unknown” and ODC Type = “Nothing Fixed.”  
Such anomaly reports are false positives, reporting a 
problem when, in fact, the software behaved correctly 
and in accordance with the specified requirements.  In 
these anomalies the projects subsequently determined 
that no change was needed.  For example, in some 
cases no change was made because the situation could 
not recur in the rest of the mission.   

   In most cases, resolution of the anomaly report 
without a fix was appropriate.  However, analysis of 
testing problem reports shows that in some anomalies 
with this ODC signature, the same requirements 
confusion might be able to recur in operations.  In such 
cases, the requirements misunderstanding on the part of 
the testing personnel might be repeated by operational 
personnel, yielding a perhaps serious operational 
anomaly. .For example, in one scenario the software 
declared a cold boot even though a warm boot had 
occurred.  This behavior is required, but the rationale is 
somewhat complicated and merits further 
documentation to preclude similar confusion.  

   In another testing incident the tester expected that 
commands issued to a component when it was off 
would be rejected.  Instead, the commands 
unexpectedly executed when the component was 
rebooted.  This behavior was, in fact, required, but 
(reasonably) was not the behavior expected by the 
tester.   Since this misunderstanding might be able to 
recur in operations with serious effect, it is worth the 
effort to record the software’s actual behavior to help 
reduce gaps between expected and actual performance. 

   Similarly, there were four cases of requirements 
confusion in operations that warranted clarification in 
the documentation to avoid future anomalies due to the 
same requirements confusion. In one anomaly report a 



defect was caused by the counterintuitive use of the 
words “deploy” and “stow.”  In this case “deploy” was 
synonymous with “close an instrument cover” and  
“stow” was synonymous with “open or remove the 
instrument cover.”  The potential for confusion 
regarding the required software behavior when the 
instrument cover had to be moved was thus quite high. 
In another case a rare situation was found in which a 
parity error could be missed in a certain combination of 
circumstances.  A decision was reasonably made not to 
fix it on this system due to resource constraints.  
However, since the problematic configuration is also 
possible with other systems, further documentation for 
future, similar systems is recommended. 

   Interestingly, in all four of these anomalies the lack 
of corrective action to remedy the requirements 
misunderstanding was judged by the projects to suffice 
for the system on which it occurred.  However, in all 
four cases it was noted in the anomaly report that the 
misunderstanding could also occur on other, future 
spacecraft.  That is, the requirements misunderstanding 
in each case was perceived as a recurrent risk on other 
systems.  This focus on the next -generation systems by 
operational personnel suggests a need in defect analysis 
to broaden the perspective from consideration of a 
single system to consideration of a set, or family, of 
similar systems (in this case, interplanetary spacecraft). 
These results suggest the possibility that better reuse of 
knowledge regarding past requirements confusions 
may forestall similar requirements confusions on other 
systems in the same product family  
 
4. Implications for testing and operations  
 
The experience reported here indicates that similar 
mechanisms for requirements discovery occur in 
testing and operations.   
 
4.1 Minor differences between phases 
 
   The two ways in which requirements discovery and 
resolution differ in testing and operations were minor.  
First, in testing the anomaly reports studied sometimes 
resulted in procedural changes, but they did not result 
in fuller documentation of existing procedures.  
However, in operations anomalies involving 
requirements confusions sometimes led to improved 
documentation of procedures (without any procedural 
changes).  Since the testing defects were drawn from 
one project and the operational defects from seven, 
further data is needed to draw any conclusion.   

   The second way in which requirements discovery 
differed in the two phases was that in testing the focus 
of the anomaly reports was on the system under test.   

In operations the focus of the anomaly reports 
broadened to consider implications for similar, future 
systems. 
 
  4.2 Identifying risks for similar systems   
 
   As described above, when a requirements confusion 
was perceived as possibly recurring on other, similar 
spacecraft, the operational analyst often logged this 
concern for the future.  A lesson learned that emerged 
from this study was that valuable pointers to possible 
risks on similar systems by knowledgeable, operational 
personnel should be stored so as to be readily 
retrievable in the future.  How to best capture and 
maintain these indicators of future risk for the product 
family is an open problem.  
 
4.3 Procedures satisfy constraints on 
requirement interactions  
 
   Both testing and operational anomalies revealed a 
dependence on procedures to achieve some newly 
identified requirement interactions.  Especially for 
critical anomalies, allocation of requirements to 
procedures carries the risk that the procedure will not 
be carried out correctly on each occasion when the 
situation requires it.  This concern reflects the number 
of times that the ODC Type for anomalies was  
“procedures not followed.” Procedures also tend to be 
written largely in natural language, making rigorous 
analysis less likely.   

   Procedures often enforce requirements for 
sequentiality of actions or preconditions for correct 
software behavior. This suggests that explicit 
traceability from requirements to procedures be 
maintained.  Similarly, a domain (or product-family)-
specific checklist of requirements commonly handled 
by procedures in this domain (e.g., calibrate before use) 
might reduce the number of anomalies due to missing 
or incomplete procedures. 
 
4.4 Patterns of requirements confusion 
 
   Certain types of requirements misunderstandings 
recur in the anomaly reports, suggesting that they may 
be frequent sources of confusion.  How best to identify 
and target this subset of requirements (e.g., for 
improved specification or extra validation) merits 
study.   

   Some examples of recurring requirements confusion 
are evident from analysis of the anomalies.  For 
example, in situations where both high-water marks 
(which record the highest value reached since the last 
reset) and counters (that may be reset periodically or 



aperiodically) are relevant, the exact meaning of their 
values is sometimes mistaken.  Persistence counts for 
high-water marks (how long has this value been the 
highest?), for example, caused multiple confusions.     

   Requirements misunderstandings between relative 
time measurements (deltas) and absolute time 
measurements (e.g., Universal Time Code) and resets 
can also occur. Another example of recurring 
requirements misunderstanding involves the distinction 
between software timing delays required by  interface 
delays or transients and by “inherent,” performance-
related delays.   

   With respect to states, distinguishing component 
unavailability from component unresponsiveness also 
caused requirements-based misunderstandings.  This 
confusion is of concern because it is often involved in 
health checks to detect and diagnose faulty states.  The 
relationship between instrument states and software 
modes (e.g., is the heater always on in this mode?), as 
well as the precise relationship between redundant data 
(e.g., commands or warning messages) and redundant 
actions were sometimes quite subtle.   

   Work is needed in this area both to identify 
additional patterns of requirements confusion and to 
develop practical means of clarifying these patterns for 
the testing and operational personnel.  Understanding 
of the requirements by the developers promotes correct 
software, but is only half of the story.   Understanding 
of the requirements by the testing and operational 
teams is also needed for the correct use and functioning 
of the software.   
  
5. Related work 
 
   The work on requirements discovery described here 
draws from or has implications for work in three areas:  
requirements evolution, requirements-related defect 
analysis, and goal-obstacle analysis.   

   Requirements discovery consists of both new 
requirements and of new knowledge about existing 
requirements.  With respect to new requirements, there 
is a significant body of work in the area of 
requirements evolution.  Many large or long-lived 
systems have requirements that evolve even after 
deployment to adapt to changes in user needs, 
hardware or software platforms, environmental factors, 
or policies (e.g., certification or legislation) [1,8].    In 
earlier work we showed that requirements also evolve 
during operations to compensate for hardware 
degradation or to add robustness when rare scenarios 
occur [12].   

   Most studies of requirements evolution consider the 
problems involved in what Dubois and Pohl have 

recently called “continuous requirements management” 
[4].  The focus is on establishing processes to specify 
and scope proposed changes to requirements. However, 
most of that work deals with new  requirements rather 
than, as here, with identifying and recovering from 
incomplete  or misunderstood requirements.  

   Requirements discovery during operations also 
involves new knowledge about existing requirements, 
and their dependencies, interactions with the system, or 
constraints.  Defect analysis results in in this area have 
tended to concentrate on requirements in systems under 
development rather than on operational systems. For 
example, defect analysis during testing has been used 
to evaluate the readiness of the software for release or 
to estimate the reliability of the software [6]. Fenton 
and Ohlsson have described the problems in using 
defect analysis results to measure the quality of  
deployed software [5].   Dalal, Hamada, Matthews, and 
Patton have used ODC in operational systems but with 
the purpose of guiding pre-release process 
improvement [3]. More recently, Ostrand and Weyuker 
have compared pre and post-release faults in an 
investigation of module fault density and fault-
proneness [14].  Unlike the systems studied here, they 
found very few (ten) high-severity post-release faults in 
thirteen releases of an inventory-tracking system and 
did not study fault causes.   

   Defect analysis has shown that misunderstanding of 
requirements and their underlying rationales frequently 
cause defects.  Lauesen and Vinter, for example, 
looked at 200 of the 800 defect reports available a few 
months after a product’s release.  They found that 
about half of the defect reports involved requirements 
defects, with missing requirements being the most-
frequent cause [9]. Similarly, in an earlier study of 
testing defects in the spacecraft domain, one of the 
authors found that the most common causes of critical 
software defects were misunderstanding the software’s 
interfaces with the system and discrepancies between 
documented requirements and actual requirements [1].   

   As mentioned earlier, the work described here differs 
from this previous work in that, by looking at anomaly 
reports rather than just defect reports, we can more 
accurately gauge the role of requirements confusions.  
As we have seen, false-positive reports of problems 
(where the software behaves correctly but 
unexpectedly) are common and reveal latent 
misunderstandings.   

   This is important because requirements 
misunderstandings have been frequently cited as the 
source of many accidents [16].  Hanks, Knight, and 
Strunk have specifically implicated breakdowns in the 
communication of domain knowledge as a major cause 
of requirements defects in high-assurance systems [7].  



In summarizing the results of a large defect-analysis 
study, Leszak, Perry and Stoll state that “domain and 
system knowledge continue to be one of the largest 
underlying problems in software development [10].”  

   The third area of related work is goal-obstacle 
analysis.  Anomaly reports are written to document 
perceived obstacles to the achievement of required 
behavior.  The list of ODC targets (what gets fixed) 
describes common ways to handle the obstacles.  The 
results reported here provide some experience-based 
confirmation of the importance of some classes and 
subclasses of obstacles described by van Lamsweerde 
and Letier [15].  

   Obstacle analysis supports the notion that if a 
requirements misunderstanding can be an obstacle to 
the satisfaction of some future goal, then it merits 
resolution (e.g., documentation) to prevent that. Van 
Lamsweerde and Letier identified “Wrong Belief” as a 
possible obstacle to meeting system goals.  “Wrong 
Belief” occurs when “the necessary information about 
the object state as recorded in the agent’s memory is 
different from the actual state of the object.”  The 
Wrong Belief obstacle class is further refined into 
subclasses, such as Information Outdated, Information 
Confusion, Information Forgotten, Wrong Inference,  
Wrong Information Provided, and Information 
Corrupted.  

     We found occurrences in the post-launch critical 
anomalies of the first four of the six Wrong Belief 
subclasses listed above.  We also identified a possible 
new subclass by analysis of the anomaly reports.  This 
new subclass would be “Information Not Used,” which 
we define as “information available to agent not used.” 
As an example, in one case a flight rule constraint was 
available but was not used.  This differs from the 
existing “Information Forgotten” subclass, which is 
defined as “information no longer available.”  

   The four mechanisms for requirements discovery and 
resolution during testing and operations appear to be 
largely consistent with the framework for obstacle 
analysis during the requirements phas e described in 
[15].  Requirements discovery resolved by 
implementing a new requirement in software 
(Mechanism 1) either adds a new goal or changes a 
goal in order to mitigate an obstacle.  Requirements 
discovery resolved by changing the operational 
procedures (as when a newly understood required 
sequencing of interleaved activities is provided 
operationally)  (Mechanism 2) often shifts the 
responsibility for a goal from the software to another 
agent (i.e., the procedure).    In long-lived systems such 
shifts of goal implementation are common [12].   In 
particular, we have found that as hardware degrades the 

software is often allocated compensatory new 
requirements.  

   Requirements misunderstanding describes situations 
in which the requirements are correct but the required 
behavior is unexpected.    Reducing occurrences of the 
obstacle in such cases may entail changes to the 
documentation to prevent the requirements 
misunderstanding on this or future systems 
(Mechanism 3).  Finally, van Lamsweerde and Letier  
describe the option to just tolerate the obstacle.  In this 
case a decision (perhaps unwise) has been made that no 
change is necessary (Mechanism 4).   The experience 
reported here confirms the value of continued 
requirements-engineering activities as long as 
requirements discovery continues, i.e., into testing and 
operations, for complex, critical systems such as these. 
 
 6. Conclusion 
 
   The results reported here show that requirements 
discovery continued to cause anomalies during both 
testing and operations in the systems studied.  
Furthermore, very similar mechanisms for 
requirements discovery and resolution were at work in 
both testing and operations. 

   By understanding how requirements confusions 
contribute to anomalies, we hope to reduce their 
incidence during operations.  Resolving and 
documenting requirements confusions in testing may 
prevent recurrence of some of those confusions during 
operations.   

   The findings suggest some patterns in what confuses 
people, at least within the spacecraft domain. It is an 
open question whether the same confusions that occur 
in testing will, if left uncorrected, recur in operations.  
Understandably, no project has volunteered to test this 
hypothesis. However, we have seen that some 
anomalies do recur.  One tes ting anomaly report even 
referred to the “rediscovery” of the requirements 
knowledge it documented.   

   Given the attention that people writing the anomaly 
reports accord to future systems in their comments, it 
also appears that documenting requirements confusions 
in operations may have value in preventing some 
recurrences of those confusions on similar, future 
systems. That is, in the testing phase the goal is to 
document requirements confusions sufficiently to 
prevent recurrence of the confusion in the operational 
phase of that system.  In the operational phase, the goal 
is to document requirements confusions sufficiently to 
prevent recurrence  on this or similar future systems.   

 



Acknowledgments.  The authors thank Daniel 
Erickson and the Mars Exploration Rover engineers 
and test teams for their assistance and feedback.  
 
References 
 

 [1] K. H. Bennett and V. T. Tajlich, “Software Maintenance 
and Evolution:  a Roadmap,” in A. Finkelstein, ed. The 
Future of Software Engineering.  ACM Press, New York, 
2000. 
 
 [2] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, 
D. S. Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal 
Defect Classification—A Concept for In-Process 
Measurements, IEEE Trans on SW Eng, Nov. 1992, pp. 943-
956.   
 
[3] S. Dalal, M. Hamada, P. Matthews, and G. Patton, “Using 
Defect Patterns to Uncover Opportunities for Improvement,” 
Proc. Int’l Conf Applications of Software Measurement,  
1999.  
 
[4] E. Dubois and K. Pohl, “RE 02:  A Major Step toward a 
Mature Requirements Engineering Community,” IEEE 
Software, vol. 20, no. 1, Jan/Feb, 2003, pp. 14-15.    
 
[5] N. E. Fenton and N. Ohlsson, “Quantitative Analysis of 
Faults and Failures in a Complex Software System,” IEEE 
Trans on Software Eng, vol. 26, no. 8, Aug, 200, pp. 797-
814. 
 
[6] S. Gardiner, ed. Testing Safety-Critical Software,  
Springer-Verlag, London, 1999. 

 
[7] K. S. Hanks, J. C. Knight, and E. A. Strunk, “Erroneous 
Requirements:  A Linguistic Basis for Their Occurrence and 
an Approach to Their Reduction,” Proc. 26th NASA Goddard 
Software Eng  Workshop, IEEE, Greenbelt, MD, Nov., 2001.  
 
[8] S. D. P. Harker, K. D. Eason, and J. E. Dobson, “The 
Change and Evolution of Requirements as a Challenge to the 
Practice of Software Engineering,”  Proc. IEEE Intl Symp on 
Requirements Eng, IEEE Computer Society, Los Alamitos, 
CA, 1992, pp. 266-272. 
 
 [9] S. Lauesen and O. Vinter, “Preventing Requirements 
Defects:  An Experiment in Process Improvement,” 
Requirements Engineering Journal,  2001, pp. 37-50. 
 
[10] M. Leszak, D.E. Perry and D. Stoll, “Classification and 
Evaluation of Defects in a Project Retrospective,” The 
Journal of Systems and Software, vol. 61, issue 3, 1 April, 
2002, pp. 173-187. 
 
 [11] R. Lutz, “Analyzing Software Requirements Errors in 
Safety-Critical, Embedded Systems,” Proc IEEE Intl Symp 
Req Eng, IEEE CS Press, 1993, pp. 126-133. 
 
[12] R. Lutz and I. C. Mikulski, “Operational Anomalies as a 
Cause of Safety-Critical Requirements Evolution,” The 

Journal of Systems and Software, to appear. 
 
[13] R. Lutz and I. C. Mikulski, “Requirements Discovery 
during the Testing of Safety-Critical Software,” Proc of Int’l 
Conf on Software Eng, 2003, to appear.. 
 
[14] T. J. Ostrand and E. J. Weyuker, “The Distribution of 
Faults in a Large Industrial Software System,” Proc Int’l 
Symp on Software Testing and Analysis, in Software 
Engineering Notes, July,  2002, pp. 55-64 
 
[15] A. van Lamsweerde and E. Letier, “Handling Obstacles 
in Goal-Oriented Requirements Engineering,”  IEEE Trans 
on Software Eng, vol. 26, no. 10, Oct. 2000, pp. 978-1005.  
 
[16] K. A. Weiss, N. Leveson, K. Lundqvist, N. Farid, and 
M. Stringfellow, “An Analysis of Causation in Aerospace 
Accidents,”  Space, 2001, Aug., 2001. 
 
 


