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Abstract.  A recurring difficulty for organizations that employ a product-line approach to 

development is that when a new product is added to an existing product line, there is currently no 

automated way to verify the comple teness and consistency of the new product’s requirements in 

terms of the product line. In this paper we address the issue of requirements verification for 

product lines.  We have implemented our approach in a requirements engineering tool called 

DECIMAL (DECIsion Modeling AppLication).  DECIMAL is a requirements verification tool 

with a rich graphical user interface that automatically checks for completeness and consistency 

between a new product and the product line to which it belongs.  The verification uses a SQL 

database server as the underlying analysis engine.  The paper describes the tool and evaluates it in 

two applications:  a virtual-reality, positional device-driver product line and the feature-

interaction resolution problem. 

 

1.  Introduction 

   Many software organizations use product lines to encourage reuse, enhance quality, and 

reduce development time.  A recurring difficulty for these organizations is that when a new 

product is added to an existing product line, there is currently no automated way to verify 

whether the new product’s specific requirements are within the reuse constraints of its product 

line (Jaring and Bosch, 2002). In this paper we address the issue of requirements verification for 

product lines.  We have implemented our approach in a requirements engineering tool called 

DECIMAL (DECIsion Modeling AppLication).  DECIMAL is an interactive, GUI-driven 

requirements verification tool that automatically checks for completeness and consistency 

between a new product and the product line to which it belongs.  The verification uses a database 

as the underlying analysis engine. 

                                                 
1 The second author’s research is supported in part by National Science Foundation Grants CCR-0204139 and CCR-
0205588.  An early version of this paper was presented at REPL’02 (Padmanabhan and Lutz, 2002).  
 



 Requirements verification for a new product in the product line addresses both 

consistency and completeness.  Consistency of a product-line member refers to whether its 

specification is self-contradictory (Ghezzi et al., 2002), i.e., ensures that “no subset of 

requirements for this instance conflict” (Doerr, 2002). Completeness of a product-line member 

refers to whether the specification documents all the needed requirements for that system (Ghezzi 

et al., 2002), i.e., ensures that “everything the instance is supposed to do is included in the 

requirements” (Doerr, 2002).   

 Verifying the consistency and completeness of a product-line member also entails 

checking that the intended inter-relationships among the selected features are maintained in the 

new system.  In product lines, these relationships are often dependency constraints. A dependency 

constraint occurs when one decision narrows the choices that the developer has for another 

decision.  In other words, a dependency constraint exists when there is a dependency among 

product-line variabilities (such as choices of features).  For example, in the virtual-reality 

application described later, the number of buffers must equal the number of sensors for each 

system in the product line.  Thus, building a new product with three sensors requires a choice of 

three buffers.   

  The main contribution of DECIMAL is that it automatically checks that dependency 

relationships among the values of the variabilities (where the value chosen for one variability 

dictates or constrains the value that another variability can take) are maintained in the new system 

being specified.  In addition, DECIMAL automates completeness, consistency, range, and type 

checks.  Since dependencies are often poorly documented, difficult to verify manually, and prone 

to be lost in long-lived systems with turnover of experts, automation can support improved 

requirements verification.  

 The DECIMAL tool is designed to allow flexibility in decision models.  A decision 

model is a description of the decisions that must be made to build a new product and of the order 

in which those decisions are to be made. Many decision models enforce a particular ordering of 

decisions (see discussion below), which is sometimes contrary to the developers’ preferences.  

DECIMAL allows decisions to be made in any order, making it compatible with a broader range 

of industrial development processes.   

 The remainder of the paper is organized as follows.  Section 2 describes related work in 

product line requirements verification and tools.  Section 3 presents the approach used and its 

implementation in the tool, with examples drawn from a standard product family (the Floating 

Weather Station).  Section 4 demonstrates the use of DECIMAL on an actual product line of 

virtual-reality device drivers.  Section 5 provides an additional evaluation of DECIMAL’s 



constraint checking capabilities by describing its uses and limits in modeling telephony feature 

interaction resolutions.  Section 6 discusses the envisioned usage of the tool in terms of process, 

scalability, effectiveness, and future work.  Section 7 provides some concluding remarks. 

 
2.  Related Work 

 The need for better and more-automated requirements verification of new product-line 

members has been widely described.  For example, a recent paper by Jaring and Bosch identifies 

the lack of tool support to identify variability information and the lack of explicit representation 

of dependencies among variabilities as problematic (Jaring and Bosch, 2002). Similarly, a lack of 

tool support was cited as an ongoing concern by the Fourth Product Line Engineering Workshop 

(Bass, Clements and Kazman, 1999) and by Zave (Zave, 2001). More recently, Doerr (2002) has 

cataloged the many advantages of explicitly modeling relationships among the product-line 

features and described the importance of thorough completeness and consistency checks. 

 With regard to definitions, we follow Clements and Northrop in describing a software 

product line as “a set of software-intensive systems sharing a common, managed set of features 

that satisfy the specific needs of a particular market segment or mission and that are developed 

from a common set of core assets in a prescribed way” (Clements and Northrop, 2002). 2 

 DECIMAL’s approach to requirements engineering for product lines is consistent with 

the FAST (Family Abstraction and Translation Technique) model described by Ardis et al. 

(Ardis, et al.,  2000), and Weiss and La i (Weiss and Lai, 1999). FAST distinguishes between the 

Domain Engineering phase where the product family requirements are defined (the investment 

phase) and the Application Engineering phase where the family members are produced (the 

payback phase).  The application-engineering environment is used to help build an individual 

member from product family requirements specified in the domain engineering process. 

DECIMAL is such a tool. It is useful for both Domain Engineering and Application Engineering 

as seen in Fig. 1. 

                                                 
2 A closely related concept to the product line is the product family.  A product family is a set of products built from a 
common set of core assets.  Most product lines (including the ones described in this paper) are built as product families. 



 
Figure 1.  DECIMAL is useful in both Domain Engineering and Application Engineering. 
 

 A key asset produced in the Domain Engineering phase is the decision model, which 

identifies how the individual systems in the product line can vary and in what order the decisions 

regarding these differences should be instantiated. There are several alternative approaches to the 

representation of the decision model for a product line. DECIMAL uses a tabular decision model 

(as do FAST, PuLSE, and KobrA) to describe variations (Doerr, 2002; Atkinson et al., 2002). The 

tabular decision model has the advantages of readability, lack of ambiguity, and a flexible level of 

detail.  

  Lam uses an alternative approach, organizing the decision model as a tree structure (Lam, 

1998).  The top-level nodes of the tree are functional areas that are common to all the members of 

the product line. The lower-level nodes are organized as a variability tree with each branch 

representing choices. Producing a new member of the product line then involves traversing the 

variability tree via selection (selecting one of the functional areas relevant to the system) and 

instantiation (instantiating the template core-requirement associated with the functional area 

selected) decisions at every node of the tree, starting from the root and working towards the 

leaves.  A disadvantage of this approach is that an entire subtree may need to be duplicated when 

a new option for a variability is added, limiting the scalability of the approach. Lutz has also 

pointed out that several choices could exist among variability trees, often with no compelling 

reason to select one over another (Lutz, 2000).   

 Gomaa describes a domain model developed using either a kernel-first approach 

(capturing features that are common to all members of the domain) or a view- integration 
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approach where multiple viewpoints are integrated to create the domain model (Gomaa, 1995). 

The individual members of the product-family are then generated by tailoring the domain model 

given the desired features in the target system.  He recommends the approach for relatively stable, 

well-understood applications. 

 Lee et al. take a feature-based approach to the decision model, organizing it according to 

four feature types:   application capabilities, operating environments, domain technologies, and 

implementation techniques (Lee, et al., 2000).  Variabilities are features that can only be present 

or absent for any particular system in the product line.  In addition, relationships among the 

features are restricted to mutual exclusion, mutual dependency, or hierarchical relationships (e.g., 

composition).  These relationship types are not rich enough to represent the dependencies in 

many actual product lines, especially if they are not feature-based. The virtual-reality device 

driver systems described here form such a product line. 

Previous approaches to decision modeling are hierarchical in nature and therefore 

introduce orderings of decisions that can complicate constraint checking.  The partial ordering of 

decisions in FAST, for example, could potentially violate dependencies among variabilities. 

Suppose that decisions regarding the values of three variabilities, V1, V2 and V3, are ordered 

such that values for V1 and V2 must be selected before selecting values for V3.  In that case, a 

dependency of the form, “if you select value ‘a’ for V3, then you must select a value ‘b’ for V1” 

can potentially violate the constraint. Selecting the value ‘c’ for V1 and then ‘a’ for V3  can force 

a change in the decision made earlier regarding the value of  V1 in order to satisfy the 

dependency constraint.  Similarly, decision models in which all decisions at level l are made 

before decisions at level l+1 can cause problems.   

Such ordering of decisions tends to be unduly restrictive on program developers who 

create new programs by modifying old programs (Parnas, 1976) and makes requirements 

evolution more burdensome to verify.  DECIMAL overcomes some of these problems. It does not 

enforce an ordering of decisions, but allows users the freedom to make decisions in any order 

(including partial or total ordering) consistent with the organization’s or project’s development 

process.  
DECIMAL also allows requirements evolution, a constant factor in large projects, 

without a resulting exponential growth in memory. Addition of a new variability or new 

commonality causes only a linear increase in storage space. DECIMAL, like FAST and unlike 

several of the other decision models, also supports multiple types of variabilities (e.g., Integer and 



Floating Point) rather than just Boolean and Enumerated. DECIMAL’s flexibility was designed to 

help bridge the gap between the variety of ways in which companies actually develop product 

lines and the prescriptive nature of many decision modeling approaches. 

 
3. Approach 

In this section, we describe the approach used to perform the analysis and the 

implementation of DECIMAL.  We describe the application of DECIMAL in both the domain-

engineering (defining the product line) and the application-engineering (developing each new 

product in the line) phases. Product-line-wide requirements are specified in the domain-

engineering phase.  The artifacts produced by the domain-engineering phase – i.e., the 

commonality analysis and the decision model – serve as the input for the application-engineering 

phase, which verifies the consistency, completeness, and range and type correctness of the 

requirements for a new member.  DECIMAL has a rich graphical user interface with wizards to 

drive the user through both the specification and the analysis process. Although DECIMAL uses 

SQL database queries to perform the actual analysis, its ease-of-use and intuitive user-interface 

hide the complexity of the database engine underneath. The end-user is not expected to be 

familiar with database technologies and can instead concentrate on the actual requirements 

analysis process. 

A version of the Floating Weather Station (FWS) product family (Weiss and Lai, 1999) 

provides examples.  We have extended the FWS example slightly with some additional features 

and feature dependencies to better illustrate DECIMAL’s capabilities.  Floating Weather Stations 

are buoys that float at sea.  They are equipped with sensors that monitor wind speed.  Each FWS 

has an onboard computer to store a recent history of wind-speed data and a radio transmitter to 

transmit the wind speed at periodic intervals.  They can be configured in various ways, including 

different types and numbers of wind-speed sensors, and different lengths of time covered by the 

history of wind-speed readings that they maintain. 

 

3.1.  Domain Engineering Activities 

The key domain engineering activities (Weis and Lai, 1999) are: 

1. the Commonality Analysis, which identifies: 

• the assumptions that characterize both what is common to all members of the family 

(called Commonalities), and how the family members may vary from one another (called 

Variabilities), and 



• a set of constraints (often dependency relationships among variabilities) specified in 

predicate logic. The constraints must be satisfied by every system in the family. 

2. the Decision Model, which describes: 

• the decisions that must be made, and  

• the order in which they are made, to produce a new system in the family.  The 

variabilities are parameterized (called parameters of variability ) to represent the 

decision(s) represented by the variability, the range of allowable values, the time at 

which the value is fixed (e.g., bound at compile time), and the default value. 

Table 1 shows some parameters of variation for the FWS product line. (See (Padmanabhan, 

2002) for a fuller treatment of the commonality analysis). 
Parameter Meaning Value Space Binding Time Default 

P5: 

MaxSensorPeriod 
Maximum sensor period [1..600] 

Translator 

Construction 
600 

P6: MaxSensors 
Maximum number of 

sensors on board an FWS 
[2..20] 

Translator 

Construction 
20 

P7: 

MaxTransmitPeriod 

 

Maximum transmission 

period 
[1..600] 

Translator 

Construction 
600 

P8: MinLow  
Minimum number of low -

resolution sensors 
[2..MaxSensors-2] 

Translator 

Construction 
2 

P11: SensorPeriod Sensor Period [1..MaxSensorPeriod] sec  Specification 5 

P12: SensorRes 
The resolution of each 

sensor 

For each sensor, one value in 

{LOWRES, HIGHRES} 
Specification LOWRES 

P13: 

TransmitPeriod 
Transmit Period [1..MaxTransmitPeriod] Specification 10 

 

Table 1.  Parameters of variation for the Floating Weather Station product line (excerpts) 

 

 Dependency constraints among the variabilities are also specified in DECIMAL. Some 

examples of constraints for the FWS are: 

• The minimum number of low resolution sensors must be between 2 and 2 less than the 

maximum number of sensors: (MinLow >= 2) and (MinLow <= MaxSensors – 2) 

• The sensor period must be less than the maximum sensor period of the sensors: SensorPeriod 

<= MaxSensorPeriod 

• High Resolution Sensors must have a sensor period that is at least half the maximum sensor 

period: (SensorRes = ‘HIGHRES’) => (SensorPeriod > MaxSensorPeriod/2) 

 



These constraints will be automatically checked in DECIMAL for every new FWS that is built in 

the product line.  Our implementation of constraint checking is similar to the approach followed 

by Feather in that a database server functions as the backend analysis engine to perform the 

checks (Feather, 1998). 

 

3.2. Application Engineering Activities 

DECIMAL stores the domain model data that the user inputs in a backend SQL Server 

database.  Four tables – a Commonalities Table, a Variabilities Table, a Constraints Table, and a 

Specific Products Table (requirements specific to individual product line members) are stored.  

Table 2 shows the Commonalities Table. 

 

Fno Cname Cdesc 

1 cTransmit At fixed intervals, the FWS transmits messages containing and approximation of 

the current wind speed at its location.  

1 cWeightedAvg The wind speed value transmitted is calculated as a weighted average of the 

sensor readings, calculated over several readings for each sensor. 

1 cSoftwareDriver Each sensor comes equipped with a software driver for it and a unique identifier. 

1 cRelySens  Each sensor on board an FWS has a way to indicate its reliability. 

 

Table 2. Commonalities table 

 

Table 3 shows a Specific Products Table for a FWS product family consisting of three members, 

FWS1001-1003.  

F. No. Fmemname MaxSensors MinLow MaxSensorPeriod SensorRes SensorPeriod cTransmit cWeightedAvg 

1 FWS1001 8 4 6 HIGHRES 3 Yes  Yes  

1 FWS1002 4 3 3 HIGHRES 2 Yes  Yes  

1 FWS1003 2 2 2 LOWRES 2 Yes  No 

 

Table 3. Specific Products table 

 Constraints in the Constraints Table (Table 4) are stored as database queries.  In order 

for the database management system to perform the analysis of the constraints specified in 

predicate logic, these constraints must be converted to a language that the database server 



understands. This language is called Transact Structured Query Language (T-SQL, for short). The 

syntax of a simple T-SQL SELECT query used to extract data from a database table is 

SELECT <column_list> FROM <tablename> WHERE <condition> 

This statement retrieves those records from the table where <condition> holds true. Only those 

columns specified by <column_list> are retrieved. To determine whether all existing members, 

including a new member being added, satisfy an assertion P or not, we check for any member in 

the product line such that not P is true. The corresponding T-SQL statement to check this would 

be: SELECT * FROM FWS WHERE not P.  (Note that “*” is a wildcard meaning “All Columns” 

in this example, and “FWS” is the name of Table 3.) 

 

Table 4.  Constraints table   

 

3.2.1 Consistency checking 

To detect inconsistencies, the SQL query representations of the constraints in the Constraints 

Table (Table 4) are executed one by one. The rows returned by executing a query indicate the 

family members that are inconsistent. For example, the constraint “SensorRes = ‘HIGHRES’ => 

SensorPeriod > MaxSensorPeriod/2” is cast into the following T-SQL query. 

SELECT * FROM FWS 

WHERE not (not(SensorRes = ‘HIGHRES’)  OR (SensorPeriod > MaxSensorPeriod/2)) 

 

1 FWS1001 8 4 6 HIGHRES 3 Yes  Yes  

 

Executing this query returns one row, indicating that there is an inconsistency in FWS1001, 

namely that the sensor period for the high resolution sensor is less than half the maximum sensor 

period in that system.   

Fno Frule Frulesql 

 

1 

 

MinLow >= 2 

 

SELECT * FROM FWS WHERE not (MinLow >= 2) 

 

1 

 

TransmitPeriod <= MaxTransmitPeriod 

 

 

SELECT * FROM FWS WHERE not (TransmitPeriod <= MaxTransmitPeriod) 

 

1 

 

SensorRes = ‘HIGHRES’ => 

SensorPeriod > MaxSensorPeriod/2 

 

 

SELECT *  FROM FWS 

WHERE not (not(SensorRes = ‘HIGHRES’)  OR (SensorPeriod > MaxSensorPeriod/2)) 



      DECIMAL does not yet check to see if the constraints themselves are consistent.  For 

example, the following rules are inconsistent:  V1 = 5 => V2 = False; V2 = False => V1 < 3. In 

the future, we want to extend DECIMAL’s capability to detect such problems before checking 

any new members. 
 

3.2.2. Completeness checking 

Detecting incompleteness (whether there exists a product-line member that did not satisfy 

a particular commonality), is straightforward in DECIMAL. For example, the statement  

SELECT * FROM FWS WHERE cWeightedAvg = ‘No’ returns one record. 

 

 

This means that the system member FWS1003 is not complete with respect to the commonality 

cWeightedAvg, i.e., that its specification is currently missing a requirement specified as common 

to all systems in the product line.  

 Sometimes commonalities are unintentionally omitted from a new member. The 

completeness checking serves as a “checklist” for the application engineer to ensure that no 

commonality is inadvertently left out of the application engineering artifacts.  DECIMAL does 

not enforce commonalities but instead supports verification that all the requirements labeled as 

commonalities are planned capabilities of the new system. 
 

3.2.3. Range and type correctness checking 

DECIMAL also performs range and type correctness checking to verify that the values of 

variabilities selected for the new member fall in the range and are of the same data type as 

specified for the product line. This functionality is programmatically built into DECIMAL’s 

front-end. For example, MaxTransmitPeriod must be an integer in the range 1-600. If a new 

member of the product line is being constructed with the value of the variability equal to 620.5, 

then DECIMAL will flag both an out-of-range and an incorrect data type in error messages. The 

developer can then correct the error(s) and re-run DECIMAL to check the value.  

The tool is used at specification time, when most bindings occur. The values of 

variabilities instantiated later (e.g., at run-time), for which future values are not currently known, 

assume the default values for their parameters of variability.  The tool does not provide run-time 

checks. 

 

1 FWS1003 2 2 2 LOWRES 2 Yes  No 



3.2.4. Handling of near commonalities in DECIMAL 

As described above, a near commonality is a commonality that is true for almost all 

family members. This occurs when an existing product-line commonality is intentionally not built 

into a new member of the system.  Near commonalities often occur when a new system in the 

product line is descoped (e.g., due to budget or schedule constraints), when a next-generation 

prototype is built, or when a testbed is constructed without certain features common to the rest of 

the systems in the product line.  

Near commonalities can be handled either as variabilities or as constrained 

commonalities which are invariant over the domain. In order to represent a near-commonality as 

a variability, a new Boolean parameter of variation is added. This parameter of variation is “true” 

for the majority of members that satisfy all commonalities and “false” for the few that don’t. An 

alternative is to represent a near-commonality (NC) as a commonality of the form "If not member 

i, then NC." Such statements are constrained commonalities which are invariant over the domain.   

For example, if all the members of the FWS product line except the baseline product 

calculate a weighted averaging of measurements, whereas the baseline product calculates an 

unweighted averaging, this near commonality can be represented as a variability (“The average 

calculated by a FWS may be weighted”) with an associated Boolean parameter of variation 

(IsWeighted) that is true for all members except the baseline FWS.  Alternatively, the near 

commonality can be represented as a commonality (“All members except the baseline use 

weighted averaging”).  The latter representation provides more information in that it is 

immediately clear that all but one instantiation of the product line require weighted averaging.  

However, with this representation, if a second system is then built without weighted averaging, 

the product-line commonality must be updated.  Representing a near commonality as a variability 

is thus preferable if it is possible that additional systems will be built without that feature, since 

no update to the product-line specification needs to occur in that case. 

DECIMAL supports the representation and checking of near commonalities by allowing 

a commonality to be designated as a near-commonality either during domain engineering (when  

the specification is created) or later during application engineering when it turns out that a 

commonality will intentionally not be satisfied by the new member.  For example, the weighted 

average could be explicitly specified as a near-commonality When a requirement is specified as a 

near commonality (“NC”) in the Commonality Table, the automated completeness checking in 

DECIMAL will not require that the near commonality be present in the member being checked 



(e.g., the baseline FWS). This expressiveness comes at a cost, which is a weakness of the current 

tool.  If a new member   is subsequently built that requires weighted averaging, the specification 

must be changed back from a near commonality to a commonality in order for DECIMAL to 

include it in future automated checks. Note, too, that if the product-line architecture relies on the 

commonality, the architectural consequences must be carefully weighed against the advantages of 

making it a near-commonality. 

  

4.  Case Study 

 DECIMAL was used to specify and analyze a product line of virtual-reality positional 

device drivers, developed as part of the VR Juggler project. VR Juggler is an active research 

project headed by Cruz-Neira at Iowa State University's Virtual Reality Applications Center 

(VRAC). VR Juggler is an open-source, virtual-reality, application-development framework used 

by companies such as John Deere and Boeing to validate requirements and designs. 

 VR Juggler provides an application framework and set of C++ classes for writing virtual 

reality applications (Just, et al., 1998). It supports a wide variety of input devices to read external 

data-positional devices (such as motion trackers in 3D space), analog devices (such as pedals, 

steering wheels and joysticks), digital devices (such as wands and mouse buttons), and gloves 

(such as the CyberGlove TM). Fig. 2 shows a class hierarchy for the device drivers.  The four 

positional device drivers for digital, positional, analog, and glove devices form the software 

product line that we specified and analyzed with DECIMAL. 

 

  

 

 

 

 

 

 

 

 

 
Figure 2.  VR Juggler device driver class hierarchy. Reproduced with permission  from 
(Bierbaum, 2000). 
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The commonality analysis of the positional device driver product line extended the FAST 

method with the representation of dependencies among variabilities, a topic of particular concern 

in the VRJuggler domain due to the growing number of novice VRJuggler users.  The product 

line was specified with help from VRAC domain experts. They reviewed our preliminary 

requirements specification and provided corrections and additional domain information. Excerpts 

from the commonality analysis are given below with particular emphasis on the variabilities and 

the interdependencies among their values. 

 

Dictionary of Terms  

• Device Sampling Thread- The microkernel is implemented as a separate thread that 

executes periodically in a loop. This thread spawns two other threads- a display thread 

and a device sampling thread, which is owned by an instance of the input device. 

• 4X4 Matrix - The matrices used to transform points in 3D space are of size 4X4 with each 

of the rows representing a homogenous vector (x, y, z, w). 

 

a  b  c  d  

e  f  g h  

i  j  k   l 

m  n  o  p  

d, h and l are used for transforming world coordinates into screen coordinates for output on a 

2D monitor while m, n, and o are used for meant for shearing and perspective viewing. 

Commonalities 

 The following statements are some of the basic assumptions about the Positional Device 

Driver domain. They are true of all Positional Device Drivers.  

• C1 (cMatrix).  All positional device drivers get positional data as a 4X4 matrix. 

• C2 (cConfig).  All the configuration functions in all drivers request the following data: 

port data, baud rate and instance name. 

• C3 (cInherit). All drivers inherit the basic base class (vjInput) methods to start sampling, 

stop sampling and update devices. 

Variabilities 

 The following statements describe how the Positional Device Drivers can vary: 



• V1 (vInterface). The interface for reading input data can vary. It can be one of: serial 

port, network, keyboard, or shared memory.  It is an enumerated type of variability. 

• V2 (vNumThread). The number of device sampling threads can vary. It can be one of {0, 

1, 2}. It is an integer type of variability. 

• V3 (VNumMatrix).  The number of 4X4 matrices into which the positional data from the 

sensors is stored can vary from 1-12. It is an integer type of variability. 

• V4 (vBaudRate). The Baud Rate of sensors can vary from 1 to 115200 as follows: {150, 

200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200}. It is 

an enumerated type of variability. 

• V5 (vTripleBuff). The driver can use or not use triple buffering algorithm: {True, False}.        

It is a Boolean type of variability. 

• V6 (vNumSens).  NumSensors (the number of sensors from which data can be read) can 

be one of  {1 to 108}.   It is an integer type of variability. 

• V7 (vIORead).  The type of I/O read can be either Blocking or Non-Blocking. It is an 

enumerated type of variability. In a blocking call, the thread blocks (waits) at the read 

system call until there is data available to read. In a non-blocking system call, the thread 

performs other activities until there is data available. 

Examples of Dependencies among Variabilities 

 A dependency exists when the choice of a value for one variability constrains the choice 

of value for another variability. The following are examples of such dependencies in the 

VRJuggler positional device drivers product line.  Fig. 3 shows the dialog box provided by 

DECIMAL to add rules to the set of assertions to be automatically checked for the product line. 

 

 

 

 

 

 

 

 

 

Figure 3.  Entering dependency constraints in DECIMAL 



• D1: Drivers that read from shared memory do not use a blocking call (Instead, they poll 

periodically to see if data is available in the shared memory pool): vInterface = “shared 

memory’ => vIORead = ‘Non-Blocking’ 

• D2: Devices that do not use triple -buffering do not require device sampling threads to 

read input data:  vTripleBuff = ‘False’ => vNumThread = 0 

• D3: If a triple buffering algorithm is not used, then the number of 4X4 matrices into 

which data is read equals the number of sensors. (Each sensor reads in data into just one 

matrix):  vTripleBuff = ‘False’ => (vNumMatrix = 1 * vNumSens) 

• D4: If a triple buffering algorithm is used, then the number of 4X4 matrices into which 

data is read is three times the number of sensors (Each sensor reads in data into three 

matrices):  vTripleBuff = ‘True’ => (vNumMatrix = 3 * vNumSens)  

Parameters of Variation 

Table 5 shows some of the parameters of variation and their relationships to the variabilities for 

the VRJuggler positional device drivers product line. 

 
Parameter Meaning Value Space  Binding Time Default 

 

vInterface 

 

Type of interface for reading 

input data. 

 

{SERIAL, NETWORK, 

SHMEM, KEYBOARD} 

 

Specification 

 

SERIAL 

 

vNumThread 

 

The number of threads to 

sample device data. 

 

[0..2] 

 

 

Specification 

 

 

0 

vNumMatrix The number of 4x4 matrices 

to store the positional data 

read from the sensors. 

[1..12] Specification 4 

vBaudRate The baud rate of the 

external input device. 

Allowable range may differ 

between manufacturers. 

{150, 200, 300, 600, 1200, 

1800, 2400, 4800, 9600, 

19200, 38400, 57600, 76800, 

115200} 

Compilation 38400 

 

 

 

 

vTripleBuff 

 

Whether or not a triple 

buffering algorithm is used 

to read and store input data. 

 

 

True, False 

 

 

Specification 

 

 

True 

vNumSens The number of sensors   

[0..108] 

 

Specification 

 

   0 

vIOread Type of system call used to 

read input data from the 

device 

{BLOCK, NONBLOCK} Specification BLOCK 

 
Table 5. Parameters of variation  



We next explain the analysis process and its results. For illustration purposes, only two 

potential members of the product line are shown:  Flock of Birds (Ascension) and VRCO 

TrackDaemon (VRCO).  

 The user invokes the consistency checker over the members of the product line by 

selecting the product line name and clicking on the appropriate button in the main toolbar. Fig. 4 

shows the result of the consistency analysis. FlockofBirds does not satisfy the first or fourth rules 

(dependency constraints D1 and D4 above). VRCO TrackD does not satisfy the first rule (D1).  

We found that the automated constraint checking useful for quickly checking alternate sets of 

requirements (similar to rapid prototyping). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Consistency checking                                              Figure 5. Completeness checking 

 

The user invokes the completeness checker by selecting the product-line name and clicking on the 

appropriate button in the main toolbar. Fig. 5 shows the result of the completeness analysis. Since 

FlockofBirds does not satisfy one commonality (C3 above), it is flagged by DECIMAL as not 

being a full family member for the application engineer’s attention. 

 Range and type checking are also invoked by selecting the appropriate button in the main 

toolbar. DECIMAL flags any variabilities that were assigned values not in the range or type 

specified for the product line.  For example, DECIMAL flagged vNumThread, which initially had 

a value of “4” for FlockofBirds, as not passing the range checker.  

It is worth noting that several of the common requirements for the positional device drivers 

relate to class inheritance. The positional device drivers were not explicitly considered as a 

product line by the developers, but they are in fact a set of similar systems with shared assets, i.e., 

a product line. An important consequence of this analysis was that VRAC has become aware of 

the device drivers as a product line with the requirements engineering products and analyses as 

reusable assets. DECIMAL’s support for verification of dependency constraints will be especially 



useful in the future, since new positional device drivers will be regularly added to the existing set 

in response to the rapid evolution of this virtual-reality technology. 

 

5.  Feature Interaction Resolution  

 In this section, we describe an evaluation of how well DECIMAL can be used to model 

the feature interaction problem. Feature interaction resolution has been a recurring and difficult 

problem for requirements engineers of telecommunications switch product lines.  This problem 

was selected to exercise DECIMAL and to more clearly distinguish what it can and cannot do. 

Telecommunication switches can be modeled as a product line. All switches in such a 

product line offer a common set of basic services (stand-alone functionalities) which are 

commonalities, as well as optional features that provide additional functionality to an existing 

feature or service. A feature interaction occurs when one feature affects the behavior of another 

feature.  Feature interactions are often undesirable in that they may violate a requirement (Li et 

al., 2002), and can sometimes lead to non-deterministic behavior. With feature interactions, 

situations may occur that are inconsistent with intended behavior or that are unexpected from the 

user’s point of view. 

 A simple example of feature interaction occurs between telephony features “Originator 

Call Screening” (OCS) and “Call Forwarding” (CF). Suppose that, according to OCS, all calls 

from a subscriber, A, to a particular person, X, are forbidden. However, if A calls B and B 

forwards the call to X, then the overall system behavior is undesirable.  

The approach we used was to model basic services as commonalities and features as 

variabilities of a telecommunications product line and then to investigate whether restrictions on 

feature interactions can be represented as constraints in DECIMAL. Table 6 lists resolution 

techniques for feature interactions compiled from (Griffeth and Velthuijsen, 1994) and 

(Homayoon and Singh, 1988) in the left-hand column.  The right-hand column of the table shows 

the DECIMAL rule used to model each constraint on the feature interactions. 

For each feature, there is an associated Boolean variability which indicates whether or not 

to include that feature. For example, Vcid = “True” means that Caller ID feature should be 

included for that member. Vsig_SC and Vsig_3WC were new variabilities that had to be 

introduced to represent the constraints. These variabilities are of enumerated type and represent 

the signal to which the Service Code (SC) and Three Way Call (3WC) features respond. 



Additional variabilities Ven911_prio and Vdcw_prio were also introduced to represent the 

priority of the associated feature (namely 911 and Delayed Call Waiting, respectively).  

 

Feature Interaction Resolution Policy 

[Griffeth et al] [Singh et al] 

 
Representation in Decimal of the feature arbitration 
policies 

 

Mutual Exclusion: e.g., CFU and CFB  

(CFU-Call Forward Unconditional, CFB – Call 

Forward Blocking) 

(Vcfu  = “True” => Vcfb = “False”) and 

(Vcfb = “True” => Vcfu = “False”) 

Dependency Between Features: e.g., ACB and 

CID  

(ACB – Automatic Call Back, CID - Caller ID) 

Vacb = “True” => Vcid = “True” 

Conditional Dependency Between Features: 

e.g., CFU, TCS, mCID 

 (TCS – Terminator Call Screening, mCID – a 

modified Caller ID informing a subscriber the 

origin of a call) 

(V2 = “True” => V1 = “True”) => V3 = “True” 

Signal Conflicts Between Features: e.g.,  3WC 

and Service Code 

(Vsig_3WC =  “flashhook” ^ Vsig_SC = “flashhook”) => ((V3WC 

= “True” => Vsig_SC = “False”) ^ (Vsig_SC = “True” => V3WC 

= “False”)) 

Time precedence among features: e.g., CW 

and CFB 

 (CW – Call Waiting) 

Cannot be represented in Decimal 

Dependency on Complexity of Features: e.g., 

CW and 3WC 

Cannot be represented in Decimal 

Precedence to Special Features:  e.g., 

Enhanced 911 

e.g., Ven911_prio = “HIGH” ^ Vdcw_prio <> “HIGH” => 

((Ven911 = “True”) => Vdcw =”False”) 

 
Table 6. Feature-interaction resolution in DECIMAL.  

 

The table shows how features such as mutual exclusion, dependency and conditional 

dependency can successfully be represented as constraints in DECIMAL without requiring any 

additional variabilities. For example, mutual exclusion between CFU (Call Forwarding 



Unconditional) and CFB (Call Forward Blocking) can be represented as a simple rule involving 

Vcfu and Vcfb.  

Signaling conflicts (when two features react to the same signal, such as flash-hook signal) 

and precedence for special features (e.g., that 911 calls have the highest precedence) can also be 

represented in DECIMAL, but require additional variabilities.  Time precedence among features 

(e.g., that feature A has precedence over feature B for the first call alone, but that for subsequent 

calls feature B has precedence over feature A) cannot be represented in DECIMAL. Resolving 

interactions at run time requires a notion of state, which is not part of DECIMAL’s requirements-

based modeling.  

In summary, DECIMAL can adequately capture feature interactions that are resolved at 

specification time (like mutual exclusion of features, conditional dependency, and signaling 

conflicts).  Resolutions of feature interactions (i.e, dependencies among variabilities) that are 

enforced at run-time cannot be checked by DECIMAL. This application helped distinguish how 

feature interactions differ from product-line constraints in that many dependency constraints 

among features are handled at run-time, whereas most product-line dependencies are resolved at 

specification time.  This need for run-time checking may limit the usefulness of product-line 

specification approaches for feature-intensive applications.  

 

6. Discussion 

 DECIMAL is currently a stand-alone tool that supports automatic checking of a new 

member’s requirements against the specifications of the product line.  To be useful in an 

industrial setting, DECIMAL will need to be integrated into an end-to-end development process. 

DECIMAL was thus designed to allow extensions for interoperability with other product-line 

tools.  For example, if the stored data from the domain analysis is in tabular (e.g., Excel) or XML 

form (based on a well known XML schema), the file can be parsed and imported into DECIMAL.  

Currently no industry-standard schema exists for storing product-line specifications in XML, but 

this can be expected to change.  In particular, such a schema would allow a domain model 

specified in a DSL (Domain Specific Language) to be input to DECIMAL.  The warning 

messages output from DECIMAL can similarly be readily converted to alternate formats, e.g., for 

inclusion in printed summary reports. 

 A product line specified in DECIMAL becomes a reusable asset of the product line.  It is 

populated by domain engineers and used by application engineers to assist in verification and to 



explore alternatives for new members.  As with other product-line assets, the DECIMAL 

specification for a product line should be placed under Configuration Management.  This ensures 

that as the product line evolves the DECIMAL database (of commonalities, variabilities, and 

constraints) remains current. 

 DECIMAL’s design makes it extensible to handle subfamilies.  A subfamily is a subset 

of a family consisting of instances that share characteristics (e.g., additional commonalities or 

variabilities) that distinguish members of the subset from all other members of the family. For 

example, in the Virtual Reality device drivers, the drivers derived from the class vjInput form a 

product family (they share methods defined in their base class vjInput) but differ in their 

functions to get input data.  The various positional device drivers form a subfamily because they 

not only share the base class’ functions (vjInput and vjPos) but also have additional methods in 

them. 

  From the user’s perspective, the product line requirements in DECIMAL are arranged in 

a hierarchical structure similar to a file system.  A subfamily is treated as another product family 

in that it may have its own set of variabilities, commonalities, and constraints in addition to those 

it inherits from its parent.  By providing a subfamily with its own database table, DECIMAL can 

perform the checks on the subfamily, but must also make sure that its parent’s commonalities, 

variabilities, and dependency constraints are satisfied. 

 All the checks that DECIMAL automates can be performed manually.  However, since 

checking dependency constraints is labor-intensive and confusing to non-experts in the domain, 

automation encourages more thorough verification in practice.  DECIMAL supports traceability 

of the product-line requirements to later development artifacts both by recording changes made to 

the requirements and by lowering the overhead of maintaining adherence to the constraints 

through its automated checks. 

 With regard to scalability, we have not performed experiments regarding the size at 

which the use of DECIMAL becomes cost-effective for a project.  Initial use indicates that the 

key factor for determining the breakeven point is the number of constraints to be checked.  When 

the number of constraints to be checked (numConst) and/or the number of members to be built 

(numMem) are high, the overhead involved in populating the database (which scales linearly with 

the number of requirements, numReq) is acceptable.  We hypothesize that use of DECIMAL is 

cost-effective when numConst × numMem > numReq.  The use of SQL for the tool promotes 

scalability by allowing growth of the database to be linear in the number of requirements 



(commonalities and variabilities).  It is possible for the number of dependency constraints to grow 

exponentially but in successful product lines they seldom do, since project risk-management tools 

tend to throttle dependency constraints (Clements and Northrop, 2002). 

 

7.  Conclusion  

 This paper describes DECIMAL, a tool for the requirements specification and 

verification of a product line.  DECIMAL provides automated checking of completeness, 

consistency, and range and type, between a specified product line and an envisioned new system 

in the product line. The most significant contribution of the tool is its capability to check that 

dependency relationships among the values of the variabilities are maintained in the new system 

being specified. Industrial users of product lines have indicated a strong need for automated tool 

support for product-line requirements verification. DECIMAL provides a step toward filling that 

need.  
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