
Tool-Supported Verification of Product Line Requirements

Prasanna Padmanabhan

Citrix Systems, Inc.
Fort Lauderdale, Florida, 33309

prasanna.padmanabhan@citrix.com

Robyn R. Lutz1

Department of Computer Science
Iowa State University, and
Jet Propulsion Laboratory

rlutz@cs.iastate.edu

Abstract. A recurring difficulty for organizations that employ a product-line approach to

development is that when a new product is added to an existing product line, there is currently no

automated way to verify the comple teness and consistency of the new product’s requirements in

terms of the product line. In this paper we address the issue of requirements verification for

product lines. We have implemented our approach in a requirements engineering tool called

DECIMAL (DECIsion Modeling AppLication). DECIMAL is a requirements verification tool

with a rich graphical user interface that automatically checks for completeness and consistency

between a new product and the product line to which it belongs. The verification uses a SQL

database server as the underlying analysis engine. The paper describes the tool and evaluates it in

two applications: a virtual-reality, positional device-driver product line and the feature-

interaction resolution problem.

1. Introduction

 Many software organizations use product lines to encourage reuse, enhance quality, and

reduce development time. A recurring difficulty for these organizations is that when a new

product is added to an existing product line, there is currently no automated way to verify

whether the new product’s specific requirements are within the reuse constraints of its product

line (Jaring and Bosch, 2002). In this paper we address the issue of requirements verification for

product lines. We have implemented our approach in a requirements engineering tool called

DECIMAL (DECIsion Modeling AppLication). DECIMAL is an interactive, GUI-driven

requirements verification tool that automatically checks for completeness and consistency

between a new product and the product line to which it belongs. The verification uses a database

as the underlying analysis engine.

1 The second author’s research is supported in part by National Science Foundation Grants CCR-0204139 and CCR-
0205588. An early version of this paper was presented at REPL’02 (Padmanabhan and Lutz, 2002).

 Requirements verification for a new product in the product line addresses both

consistency and completeness. Consistency of a product-line member refers to whether its

specification is self-contradictory (Ghezzi et al., 2002), i.e., ensures that “no subset of

requirements for this instance conflict” (Doerr, 2002). Completeness of a product-line member

refers to whether the specification documents all the needed requirements for that system (Ghezzi

et al., 2002), i.e., ensures that “everything the instance is supposed to do is included in the

requirements” (Doerr, 2002).

 Verifying the consistency and completeness of a product-line member also entails

checking that the intended inter-relationships among the selected features are maintained in the

new system. In product lines, these relationships are often dependency constraints. A dependency

constraint occurs when one decision narrows the choices that the developer has for another

decision. In other words, a dependency constraint exists when there is a dependency among

product-line variabilities (such as choices of features). For example, in the virtual-reality

application described later, the number of buffers must equal the number of sensors for each

system in the product line. Thus, building a new product with three sensors requires a choice of

three buffers.

 The main contribution of DECIMAL is that it automatically checks that dependency

relationships among the values of the variabilities (where the value chosen for one variability

dictates or constrains the value that another variability can take) are maintained in the new system

being specified. In addition, DECIMAL automates completeness, consistency, range, and type

checks. Since dependencies are often poorly documented, difficult to verify manually, and prone

to be lost in long-lived systems with turnover of experts, automation can support improved

requirements verification.

 The DECIMAL tool is designed to allow flexibility in decision models. A decision

model is a description of the decisions that must be made to build a new product and of the order

in which those decisions are to be made. Many decision models enforce a particular ordering of

decisions (see discussion below), which is sometimes contrary to the developers’ preferences.

DECIMAL allows decisions to be made in any order, making it compatible with a broader range

of industrial development processes.

 The remainder of the paper is organized as follows. Section 2 describes related work in

product line requirements verification and tools. Section 3 presents the approach used and its

implementation in the tool, with examples drawn from a standard product family (the Floating

Weather Station). Section 4 demonstrates the use of DECIMAL on an actual product line of

virtual-reality device drivers. Section 5 provides an additional evaluation of DECIMAL’s

constraint checking capabilities by describing its uses and limits in modeling telephony feature

interaction resolutions. Section 6 discusses the envisioned usage of the tool in terms of process,

scalability, effectiveness, and future work. Section 7 provides some concluding remarks.

2. Related Work

 The need for better and more-automated requirements verification of new product-line

members has been widely described. For example, a recent paper by Jaring and Bosch identifies

the lack of tool support to identify variability information and the lack of explicit representation

of dependencies among variabilities as problematic (Jaring and Bosch, 2002). Similarly, a lack of

tool support was cited as an ongoing concern by the Fourth Product Line Engineering Workshop

(Bass, Clements and Kazman, 1999) and by Zave (Zave, 2001). More recently, Doerr (2002) has

cataloged the many advantages of explicitly modeling relationships among the product-line

features and described the importance of thorough completeness and consistency checks.

 With regard to definitions, we follow Clements and Northrop in describing a software

product line as “a set of software-intensive systems sharing a common, managed set of features

that satisfy the specific needs of a particular market segment or mission and that are developed

from a common set of core assets in a prescribed way” (Clements and Northrop, 2002). 2

 DECIMAL’s approach to requirements engineering for product lines is consistent with

the FAST (Family Abstraction and Translation Technique) model described by Ardis et al.

(Ardis, et al., 2000), and Weiss and La i (Weiss and Lai, 1999). FAST distinguishes between the

Domain Engineering phase where the product family requirements are defined (the investment

phase) and the Application Engineering phase where the family members are produced (the

payback phase). The application-engineering environment is used to help build an individual

member from product family requirements specified in the domain engineering process.

DECIMAL is such a tool. It is useful for both Domain Engineering and Application Engineering

as seen in Fig. 1.

2 A closely related concept to the product line is the product family. A product family is a set of products built from a
common set of core assets. Most product lines (including the ones described in this paper) are built as product families.

Figure 1. DECIMAL is useful in both Domain Engineering and Application Engineering.

 A key asset produced in the Domain Engineering phase is the decision model, which

identifies how the individual systems in the product line can vary and in what order the decisions

regarding these differences should be instantiated. There are several alternative approaches to the

representation of the decision model for a product line. DECIMAL uses a tabular decision model

(as do FAST, PuLSE, and KobrA) to describe variations (Doerr, 2002; Atkinson et al., 2002). The

tabular decision model has the advantages of readability, lack of ambiguity, and a flexible level of

detail.

 Lam uses an alternative approach, organizing the decision model as a tree structure (Lam,

1998). The top-level nodes of the tree are functional areas that are common to all the members of

the product line. The lower-level nodes are organized as a variability tree with each branch

representing choices. Producing a new member of the product line then involves traversing the

variability tree via selection (selecting one of the functional areas relevant to the system) and

instantiation (instantiating the template core-requirement associated with the functional area

selected) decisions at every node of the tree, starting from the root and working towards the

leaves. A disadvantage of this approach is that an entire subtree may need to be duplicated when

a new option for a variability is added, limiting the scalability of the approach. Lutz has also

pointed out that several choices could exist among variability trees, often with no compelling

reason to select one over another (Lutz, 2000).

 Gomaa describes a domain model developed using either a kernel-first approach

(capturing features that are common to all members of the domain) or a view- integration

Decimal

 For Product Line:
1. Commonality
 Analysis
2. Decision Model

New member’s
requirements are
specified and
verified with errors
flagged

D
om

ai
n

E
ng

in
ee

ri
ng

 A
pplication E

ngineering

approach where multiple viewpoints are integrated to create the domain model (Gomaa, 1995).

The individual members of the product-family are then generated by tailoring the domain model

given the desired features in the target system. He recommends the approach for relatively stable,

well-understood applications.

 Lee et al. take a feature-based approach to the decision model, organizing it according to

four feature types: application capabilities, operating environments, domain technologies, and

implementation techniques (Lee, et al., 2000). Variabilities are features that can only be present

or absent for any particular system in the product line. In addition, relationships among the

features are restricted to mutual exclusion, mutual dependency, or hierarchical relationships (e.g.,

composition). These relationship types are not rich enough to represent the dependencies in

many actual product lines, especially if they are not feature-based. The virtual-reality device

driver systems described here form such a product line.

Previous approaches to decision modeling are hierarchical in nature and therefore

introduce orderings of decisions that can complicate constraint checking. The partial ordering of

decisions in FAST, for example, could potentially violate dependencies among variabilities.

Suppose that decisions regarding the values of three variabilities, V1, V2 and V3, are ordered

such that values for V1 and V2 must be selected before selecting values for V3. In that case, a

dependency of the form, “if you select value ‘a’ for V3, then you must select a value ‘b’ for V1”

can potentially violate the constraint. Selecting the value ‘c’ for V1 and then ‘a’ for V3 can force

a change in the decision made earlier regarding the value of V1 in order to satisfy the

dependency constraint. Similarly, decision models in which all decisions at level l are made

before decisions at level l+1 can cause problems.

Such ordering of decisions tends to be unduly restrictive on program developers who

create new programs by modifying old programs (Parnas, 1976) and makes requirements

evolution more burdensome to verify. DECIMAL overcomes some of these problems. It does not

enforce an ordering of decisions, but allows users the freedom to make decisions in any order

(including partial or total ordering) consistent with the organization’s or project’s development

process.
DECIMAL also allows requirements evolution, a constant factor in large projects,

without a resulting exponential growth in memory. Addition of a new variability or new

commonality causes only a linear increase in storage space. DECIMAL, like FAST and unlike

several of the other decision models, also supports multiple types of variabilities (e.g., Integer and

Floating Point) rather than just Boolean and Enumerated. DECIMAL’s flexibility was designed to

help bridge the gap between the variety of ways in which companies actually develop product

lines and the prescriptive nature of many decision modeling approaches.

3. Approach

In this section, we describe the approach used to perform the analysis and the

implementation of DECIMAL. We describe the application of DECIMAL in both the domain-

engineering (defining the product line) and the application-engineering (developing each new

product in the line) phases. Product-line-wide requirements are specified in the domain-

engineering phase. The artifacts produced by the domain-engineering phase – i.e., the

commonality analysis and the decision model – serve as the input for the application-engineering

phase, which verifies the consistency, completeness, and range and type correctness of the

requirements for a new member. DECIMAL has a rich graphical user interface with wizards to

drive the user through both the specification and the analysis process. Although DECIMAL uses

SQL database queries to perform the actual analysis, its ease-of-use and intuitive user-interface

hide the complexity of the database engine underneath. The end-user is not expected to be

familiar with database technologies and can instead concentrate on the actual requirements

analysis process.

A version of the Floating Weather Station (FWS) product family (Weiss and Lai, 1999)

provides examples. We have extended the FWS example slightly with some additional features

and feature dependencies to better illustrate DECIMAL’s capabilities. Floating Weather Stations

are buoys that float at sea. They are equipped with sensors that monitor wind speed. Each FWS

has an onboard computer to store a recent history of wind-speed data and a radio transmitter to

transmit the wind speed at periodic intervals. They can be configured in various ways, including

different types and numbers of wind-speed sensors, and different lengths of time covered by the

history of wind-speed readings that they maintain.

3.1. Domain Engineering Activities

The key domain engineering activities (Weis and Lai, 1999) are:

1. the Commonality Analysis, which identifies:

• the assumptions that characterize both what is common to all members of the family

(called Commonalities), and how the family members may vary from one another (called

Variabilities), and

• a set of constraints (often dependency relationships among variabilities) specified in

predicate logic. The constraints must be satisfied by every system in the family.

2. the Decision Model, which describes:

• the decisions that must be made, and

• the order in which they are made, to produce a new system in the family. The

variabilities are parameterized (called parameters of variability) to represent the

decision(s) represented by the variability, the range of allowable values, the time at

which the value is fixed (e.g., bound at compile time), and the default value.

Table 1 shows some parameters of variation for the FWS product line. (See (Padmanabhan,

2002) for a fuller treatment of the commonality analysis).
Parameter Meaning Value Space Binding Time Default

P5:

MaxSensorPeriod
Maximum sensor period [1..600]

Translator

Construction
600

P6: MaxSensors
Maximum number of

sensors on board an FWS
[2..20]

Translator

Construction
20

P7:

MaxTransmitPeriod

Maximum transmission

period
[1..600]

Translator

Construction
600

P8: MinLow
Minimum number of low -

resolution sensors
[2..MaxSensors-2]

Translator

Construction
2

P11: SensorPeriod Sensor Period [1..MaxSensorPeriod] sec Specification 5

P12: SensorRes
The resolution of each

sensor

For each sensor, one value in

{LOWRES, HIGHRES}
Specification LOWRES

P13:

TransmitPeriod
Transmit Period [1..MaxTransmitPeriod] Specification 10

Table 1. Parameters of variation for the Floating Weather Station product line (excerpts)

 Dependency constraints among the variabilities are also specified in DECIMAL. Some

examples of constraints for the FWS are:

• The minimum number of low resolution sensors must be between 2 and 2 less than the

maximum number of sensors: (MinLow >= 2) and (MinLow <= MaxSensors – 2)

• The sensor period must be less than the maximum sensor period of the sensors: SensorPeriod

<= MaxSensorPeriod

• High Resolution Sensors must have a sensor period that is at least half the maximum sensor

period: (SensorRes = ‘HIGHRES’) => (SensorPeriod > MaxSensorPeriod/2)

These constraints will be automatically checked in DECIMAL for every new FWS that is built in

the product line. Our implementation of constraint checking is similar to the approach followed

by Feather in that a database server functions as the backend analysis engine to perform the

checks (Feather, 1998).

3.2. Application Engineering Activities

DECIMAL stores the domain model data that the user inputs in a backend SQL Server

database. Four tables – a Commonalities Table, a Variabilities Table, a Constraints Table, and a

Specific Products Table (requirements specific to individual product line members) are stored.

Table 2 shows the Commonalities Table.

Fno Cname Cdesc

1 cTransmit At fixed intervals, the FWS transmits messages containing and approximation of

the current wind speed at its location.

1 cWeightedAvg The wind speed value transmitted is calculated as a weighted average of the

sensor readings, calculated over several readings for each sensor.

1 cSoftwareDriver Each sensor comes equipped with a software driver for it and a unique identifier.

1 cRelySens Each sensor on board an FWS has a way to indicate its reliability.

Table 2. Commonalities table

Table 3 shows a Specific Products Table for a FWS product family consisting of three members,

FWS1001-1003.

F. No. Fmemname MaxSensors MinLow MaxSensorPeriod SensorRes SensorPeriod cTransmit cWeightedAvg

1 FWS1001 8 4 6 HIGHRES 3 Yes Yes

1 FWS1002 4 3 3 HIGHRES 2 Yes Yes

1 FWS1003 2 2 2 LOWRES 2 Yes No

Table 3. Specific Products table

 Constraints in the Constraints Table (Table 4) are stored as database queries. In order

for the database management system to perform the analysis of the constraints specified in

predicate logic, these constraints must be converted to a language that the database server

understands. This language is called Transact Structured Query Language (T-SQL, for short). The

syntax of a simple T-SQL SELECT query used to extract data from a database table is

SELECT <column_list> FROM <tablename> WHERE <condition>

This statement retrieves those records from the table where <condition> holds true. Only those

columns specified by <column_list> are retrieved. To determine whether all existing members,

including a new member being added, satisfy an assertion P or not, we check for any member in

the product line such that not P is true. The corresponding T-SQL statement to check this would

be: SELECT * FROM FWS WHERE not P. (Note that “*” is a wildcard meaning “All Columns”

in this example, and “FWS” is the name of Table 3.)

Table 4. Constraints table

3.2.1 Consistency checking

To detect inconsistencies, the SQL query representations of the constraints in the Constraints

Table (Table 4) are executed one by one. The rows returned by executing a query indicate the

family members that are inconsistent. For example, the constraint “SensorRes = ‘HIGHRES’ =>

SensorPeriod > MaxSensorPeriod/2” is cast into the following T-SQL query.

SELECT * FROM FWS

WHERE not (not(SensorRes = ‘HIGHRES’) OR (SensorPeriod > MaxSensorPeriod/2))

1 FWS1001 8 4 6 HIGHRES 3 Yes Yes

Executing this query returns one row, indicating that there is an inconsistency in FWS1001,

namely that the sensor period for the high resolution sensor is less than half the maximum sensor

period in that system.

Fno Frule Frulesql

1

MinLow >= 2

SELECT * FROM FWS WHERE not (MinLow >= 2)

1

TransmitPeriod <= MaxTransmitPeriod

SELECT * FROM FWS WHERE not (TransmitPeriod <= MaxTransmitPeriod)

1

SensorRes = ‘HIGHRES’ =>

SensorPeriod > MaxSensorPeriod/2

SELECT * FROM FWS

WHERE not (not(SensorRes = ‘HIGHRES’) OR (SensorPeriod > MaxSensorPeriod/2))

 DECIMAL does not yet check to see if the constraints themselves are consistent. For

example, the following rules are inconsistent: V1 = 5 => V2 = False; V2 = False => V1 < 3. In

the future, we want to extend DECIMAL’s capability to detect such problems before checking

any new members.

3.2.2. Completeness checking

Detecting incompleteness (whether there exists a product-line member that did not satisfy

a particular commonality), is straightforward in DECIMAL. For example, the statement

SELECT * FROM FWS WHERE cWeightedAvg = ‘No’ returns one record.

This means that the system member FWS1003 is not complete with respect to the commonality

cWeightedAvg, i.e., that its specification is currently missing a requirement specified as common

to all systems in the product line.

 Sometimes commonalities are unintentionally omitted from a new member. The

completeness checking serves as a “checklist” for the application engineer to ensure that no

commonality is inadvertently left out of the application engineering artifacts. DECIMAL does

not enforce commonalities but instead supports verification that all the requirements labeled as

commonalities are planned capabilities of the new system.

3.2.3. Range and type correctness checking

DECIMAL also performs range and type correctness checking to verify that the values of

variabilities selected for the new member fall in the range and are of the same data type as

specified for the product line. This functionality is programmatically built into DECIMAL’s

front-end. For example, MaxTransmitPeriod must be an integer in the range 1-600. If a new

member of the product line is being constructed with the value of the variability equal to 620.5,

then DECIMAL will flag both an out-of-range and an incorrect data type in error messages. The

developer can then correct the error(s) and re-run DECIMAL to check the value.

The tool is used at specification time, when most bindings occur. The values of

variabilities instantiated later (e.g., at run-time), for which future values are not currently known,

assume the default values for their parameters of variability. The tool does not provide run-time

checks.

1 FWS1003 2 2 2 LOWRES 2 Yes No

3.2.4. Handling of near commonalities in DECIMAL

As described above, a near commonality is a commonality that is true for almost all

family members. This occurs when an existing product-line commonality is intentionally not built

into a new member of the system. Near commonalities often occur when a new system in the

product line is descoped (e.g., due to budget or schedule constraints), when a next-generation

prototype is built, or when a testbed is constructed without certain features common to the rest of

the systems in the product line.

Near commonalities can be handled either as variabilities or as constrained

commonalities which are invariant over the domain. In order to represent a near-commonality as

a variability, a new Boolean parameter of variation is added. This parameter of variation is “true”

for the majority of members that satisfy all commonalities and “false” for the few that don’t. An

alternative is to represent a near-commonality (NC) as a commonality of the form "If not member

i, then NC." Such statements are constrained commonalities which are invariant over the domain.

For example, if all the members of the FWS product line except the baseline product

calculate a weighted averaging of measurements, whereas the baseline product calculates an

unweighted averaging, this near commonality can be represented as a variability (“The average

calculated by a FWS may be weighted”) with an associated Boolean parameter of variation

(IsWeighted) that is true for all members except the baseline FWS. Alternatively, the near

commonality can be represented as a commonality (“All members except the baseline use

weighted averaging”). The latter representation provides more information in that it is

immediately clear that all but one instantiation of the product line require weighted averaging.

However, with this representation, if a second system is then built without weighted averaging,

the product-line commonality must be updated. Representing a near commonality as a variability

is thus preferable if it is possible that additional systems will be built without that feature, since

no update to the product-line specification needs to occur in that case.

DECIMAL supports the representation and checking of near commonalities by allowing

a commonality to be designated as a near-commonality either during domain engineering (when

the specification is created) or later during application engineering when it turns out that a

commonality will intentionally not be satisfied by the new member. For example, the weighted

average could be explicitly specified as a near-commonality When a requirement is specified as a

near commonality (“NC”) in the Commonality Table, the automated completeness checking in

DECIMAL will not require that the near commonality be present in the member being checked

(e.g., the baseline FWS). This expressiveness comes at a cost, which is a weakness of the current

tool. If a new member is subsequently built that requires weighted averaging, the specification

must be changed back from a near commonality to a commonality in order for DECIMAL to

include it in future automated checks. Note, too, that if the product-line architecture relies on the

commonality, the architectural consequences must be carefully weighed against the advantages of

making it a near-commonality.

4. Case Study

 DECIMAL was used to specify and analyze a product line of virtual-reality positional

device drivers, developed as part of the VR Juggler project. VR Juggler is an active research

project headed by Cruz-Neira at Iowa State University's Virtual Reality Applications Center

(VRAC). VR Juggler is an open-source, virtual-reality, application-development framework used

by companies such as John Deere and Boeing to validate requirements and designs.

 VR Juggler provides an application framework and set of C++ classes for writing virtual

reality applications (Just, et al., 1998). It supports a wide variety of input devices to read external

data-positional devices (such as motion trackers in 3D space), analog devices (such as pedals,

steering wheels and joysticks), digital devices (such as wands and mouse buttons), and gloves

(such as the CyberGlove TM). Fig. 2 shows a class hierarchy for the device drivers. The four

positional device drivers for digital, positional, analog, and glove devices form the software

product line that we specified and analyzed with DECIMAL.

Figure 2. VR Juggler device driver class hierarchy. Reproduced with permission from
(Bierbaum, 2000).

keyboard Serial-
port

network Shared-
memory

The commonality analysis of the positional device driver product line extended the FAST

method with the representation of dependencies among variabilities, a topic of particular concern

in the VRJuggler domain due to the growing number of novice VRJuggler users. The product

line was specified with help from VRAC domain experts. They reviewed our preliminary

requirements specification and provided corrections and additional domain information. Excerpts

from the commonality analysis are given below with particular emphasis on the variabilities and

the interdependencies among their values.

Dictionary of Terms

• Device Sampling Thread- The microkernel is implemented as a separate thread that

executes periodically in a loop. This thread spawns two other threads- a display thread

and a device sampling thread, which is owned by an instance of the input device.

• 4X4 Matrix - The matrices used to transform points in 3D space are of size 4X4 with each

of the rows representing a homogenous vector (x, y, z, w).

a b c d

e f g h

i j k l

m n o p

d, h and l are used for transforming world coordinates into screen coordinates for output on a

2D monitor while m, n, and o are used for meant for shearing and perspective viewing.

Commonalities

 The following statements are some of the basic assumptions about the Positional Device

Driver domain. They are true of all Positional Device Drivers.

• C1 (cMatrix). All positional device drivers get positional data as a 4X4 matrix.

• C2 (cConfig). All the configuration functions in all drivers request the following data:

port data, baud rate and instance name.

• C3 (cInherit). All drivers inherit the basic base class (vjInput) methods to start sampling,

stop sampling and update devices.

Variabilities

 The following statements describe how the Positional Device Drivers can vary:

• V1 (vInterface). The interface for reading input data can vary. It can be one of: serial

port, network, keyboard, or shared memory. It is an enumerated type of variability.

• V2 (vNumThread). The number of device sampling threads can vary. It can be one of {0,

1, 2}. It is an integer type of variability.

• V3 (VNumMatrix). The number of 4X4 matrices into which the positional data from the

sensors is stored can vary from 1-12. It is an integer type of variability.

• V4 (vBaudRate). The Baud Rate of sensors can vary from 1 to 115200 as follows: {150,

200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200}. It is

an enumerated type of variability.

• V5 (vTripleBuff). The driver can use or not use triple buffering algorithm: {True, False}.

It is a Boolean type of variability.

• V6 (vNumSens). NumSensors (the number of sensors from which data can be read) can

be one of {1 to 108}. It is an integer type of variability.

• V7 (vIORead). The type of I/O read can be either Blocking or Non-Blocking. It is an

enumerated type of variability. In a blocking call, the thread blocks (waits) at the read

system call until there is data available to read. In a non-blocking system call, the thread

performs other activities until there is data available.

Examples of Dependencies among Variabilities

 A dependency exists when the choice of a value for one variability constrains the choice

of value for another variability. The following are examples of such dependencies in the

VRJuggler positional device drivers product line. Fig. 3 shows the dialog box provided by

DECIMAL to add rules to the set of assertions to be automatically checked for the product line.

Figure 3. Entering dependency constraints in DECIMAL

• D1: Drivers that read from shared memory do not use a blocking call (Instead, they poll

periodically to see if data is available in the shared memory pool): vInterface = “shared

memory’ => vIORead = ‘Non-Blocking’

• D2: Devices that do not use triple -buffering do not require device sampling threads to

read input data: vTripleBuff = ‘False’ => vNumThread = 0

• D3: If a triple buffering algorithm is not used, then the number of 4X4 matrices into

which data is read equals the number of sensors. (Each sensor reads in data into just one

matrix): vTripleBuff = ‘False’ => (vNumMatrix = 1 * vNumSens)

• D4: If a triple buffering algorithm is used, then the number of 4X4 matrices into which

data is read is three times the number of sensors (Each sensor reads in data into three

matrices): vTripleBuff = ‘True’ => (vNumMatrix = 3 * vNumSens)

Parameters of Variation

Table 5 shows some of the parameters of variation and their relationships to the variabilities for

the VRJuggler positional device drivers product line.

Parameter Meaning Value Space Binding Time Default

vInterface

Type of interface for reading

input data.

{SERIAL, NETWORK,

SHMEM, KEYBOARD}

Specification

SERIAL

vNumThread

The number of threads to

sample device data.

[0..2]

Specification

0

vNumMatrix The number of 4x4 matrices

to store the positional data

read from the sensors.

[1..12] Specification 4

vBaudRate The baud rate of the

external input device.

Allowable range may differ

between manufacturers.

{150, 200, 300, 600, 1200,

1800, 2400, 4800, 9600,

19200, 38400, 57600, 76800,

115200}

Compilation 38400

vTripleBuff

Whether or not a triple

buffering algorithm is used

to read and store input data.

True, False

Specification

True

vNumSens The number of sensors

[0..108]

Specification

 0

vIOread Type of system call used to

read input data from the

device

{BLOCK, NONBLOCK} Specification BLOCK

Table 5. Parameters of variation

We next explain the analysis process and its results. For illustration purposes, only two

potential members of the product line are shown: Flock of Birds (Ascension) and VRCO

TrackDaemon (VRCO).

 The user invokes the consistency checker over the members of the product line by

selecting the product line name and clicking on the appropriate button in the main toolbar. Fig. 4

shows the result of the consistency analysis. FlockofBirds does not satisfy the first or fourth rules

(dependency constraints D1 and D4 above). VRCO TrackD does not satisfy the first rule (D1).

We found that the automated constraint checking useful for quickly checking alternate sets of

requirements (similar to rapid prototyping).

Figure 4. Consistency checking Figure 5. Completeness checking

The user invokes the completeness checker by selecting the product-line name and clicking on the

appropriate button in the main toolbar. Fig. 5 shows the result of the completeness analysis. Since

FlockofBirds does not satisfy one commonality (C3 above), it is flagged by DECIMAL as not

being a full family member for the application engineer’s attention.

 Range and type checking are also invoked by selecting the appropriate button in the main

toolbar. DECIMAL flags any variabilities that were assigned values not in the range or type

specified for the product line. For example, DECIMAL flagged vNumThread, which initially had

a value of “4” for FlockofBirds, as not passing the range checker.

It is worth noting that several of the common requirements for the positional device drivers

relate to class inheritance. The positional device drivers were not explicitly considered as a

product line by the developers, but they are in fact a set of similar systems with shared assets, i.e.,

a product line. An important consequence of this analysis was that VRAC has become aware of

the device drivers as a product line with the requirements engineering products and analyses as

reusable assets. DECIMAL’s support for verification of dependency constraints will be especially

useful in the future, since new positional device drivers will be regularly added to the existing set

in response to the rapid evolution of this virtual-reality technology.

5. Feature Interaction Resolution

 In this section, we describe an evaluation of how well DECIMAL can be used to model

the feature interaction problem. Feature interaction resolution has been a recurring and difficult

problem for requirements engineers of telecommunications switch product lines. This problem

was selected to exercise DECIMAL and to more clearly distinguish what it can and cannot do.

Telecommunication switches can be modeled as a product line. All switches in such a

product line offer a common set of basic services (stand-alone functionalities) which are

commonalities, as well as optional features that provide additional functionality to an existing

feature or service. A feature interaction occurs when one feature affects the behavior of another

feature. Feature interactions are often undesirable in that they may violate a requirement (Li et

al., 2002), and can sometimes lead to non-deterministic behavior. With feature interactions,

situations may occur that are inconsistent with intended behavior or that are unexpected from the

user’s point of view.

 A simple example of feature interaction occurs between telephony features “Originator

Call Screening” (OCS) and “Call Forwarding” (CF). Suppose that, according to OCS, all calls

from a subscriber, A, to a particular person, X, are forbidden. However, if A calls B and B

forwards the call to X, then the overall system behavior is undesirable.

The approach we used was to model basic services as commonalities and features as

variabilities of a telecommunications product line and then to investigate whether restrictions on

feature interactions can be represented as constraints in DECIMAL. Table 6 lists resolution

techniques for feature interactions compiled from (Griffeth and Velthuijsen, 1994) and

(Homayoon and Singh, 1988) in the left-hand column. The right-hand column of the table shows

the DECIMAL rule used to model each constraint on the feature interactions.

For each feature, there is an associated Boolean variability which indicates whether or not

to include that feature. For example, Vcid = “True” means that Caller ID feature should be

included for that member. Vsig_SC and Vsig_3WC were new variabilities that had to be

introduced to represent the constraints. These variabilities are of enumerated type and represent

the signal to which the Service Code (SC) and Three Way Call (3WC) features respond.

Additional variabilities Ven911_prio and Vdcw_prio were also introduced to represent the

priority of the associated feature (namely 911 and Delayed Call Waiting, respectively).

Feature Interaction Resolution Policy

[Griffeth et al] [Singh et al]

Representation in Decimal of the feature arbitration
policies

Mutual Exclusion: e.g., CFU and CFB

(CFU-Call Forward Unconditional, CFB – Call

Forward Blocking)

(Vcfu = “True” => Vcfb = “False”) and

(Vcfb = “True” => Vcfu = “False”)

Dependency Between Features: e.g., ACB and

CID

(ACB – Automatic Call Back, CID - Caller ID)

Vacb = “True” => Vcid = “True”

Conditional Dependency Between Features:

e.g., CFU, TCS, mCID

 (TCS – Terminator Call Screening, mCID – a

modified Caller ID informing a subscriber the

origin of a call)

(V2 = “True” => V1 = “True”) => V3 = “True”

Signal Conflicts Between Features: e.g., 3WC

and Service Code

(Vsig_3WC = “flashhook” ^ Vsig_SC = “flashhook”) => ((V3WC

= “True” => Vsig_SC = “False”) ^ (Vsig_SC = “True” => V3WC

= “False”))

Time precedence among features: e.g., CW

and CFB

 (CW – Call Waiting)

Cannot be represented in Decimal

Dependency on Complexity of Features: e.g.,

CW and 3WC

Cannot be represented in Decimal

Precedence to Special Features: e.g.,

Enhanced 911

e.g., Ven911_prio = “HIGH” ^ Vdcw_prio <> “HIGH” =>

((Ven911 = “True”) => Vdcw =”False”)

Table 6. Feature-interaction resolution in DECIMAL.

The table shows how features such as mutual exclusion, dependency and conditional

dependency can successfully be represented as constraints in DECIMAL without requiring any

additional variabilities. For example, mutual exclusion between CFU (Call Forwarding

Unconditional) and CFB (Call Forward Blocking) can be represented as a simple rule involving

Vcfu and Vcfb.

Signaling conflicts (when two features react to the same signal, such as flash-hook signal)

and precedence for special features (e.g., that 911 calls have the highest precedence) can also be

represented in DECIMAL, but require additional variabilities. Time precedence among features

(e.g., that feature A has precedence over feature B for the first call alone, but that for subsequent

calls feature B has precedence over feature A) cannot be represented in DECIMAL. Resolving

interactions at run time requires a notion of state, which is not part of DECIMAL’s requirements-

based modeling.

In summary, DECIMAL can adequately capture feature interactions that are resolved at

specification time (like mutual exclusion of features, conditional dependency, and signaling

conflicts). Resolutions of feature interactions (i.e, dependencies among variabilities) that are

enforced at run-time cannot be checked by DECIMAL. This application helped distinguish how

feature interactions differ from product-line constraints in that many dependency constraints

among features are handled at run-time, whereas most product-line dependencies are resolved at

specification time. This need for run-time checking may limit the usefulness of product-line

specification approaches for feature-intensive applications.

6. Discussion

 DECIMAL is currently a stand-alone tool that supports automatic checking of a new

member’s requirements against the specifications of the product line. To be useful in an

industrial setting, DECIMAL will need to be integrated into an end-to-end development process.

DECIMAL was thus designed to allow extensions for interoperability with other product-line

tools. For example, if the stored data from the domain analysis is in tabular (e.g., Excel) or XML

form (based on a well known XML schema), the file can be parsed and imported into DECIMAL.

Currently no industry-standard schema exists for storing product-line specifications in XML, but

this can be expected to change. In particular, such a schema would allow a domain model

specified in a DSL (Domain Specific Language) to be input to DECIMAL. The warning

messages output from DECIMAL can similarly be readily converted to alternate formats, e.g., for

inclusion in printed summary reports.

 A product line specified in DECIMAL becomes a reusable asset of the product line. It is

populated by domain engineers and used by application engineers to assist in verification and to

explore alternatives for new members. As with other product-line assets, the DECIMAL

specification for a product line should be placed under Configuration Management. This ensures

that as the product line evolves the DECIMAL database (of commonalities, variabilities, and

constraints) remains current.

 DECIMAL’s design makes it extensible to handle subfamilies. A subfamily is a subset

of a family consisting of instances that share characteristics (e.g., additional commonalities or

variabilities) that distinguish members of the subset from all other members of the family. For

example, in the Virtual Reality device drivers, the drivers derived from the class vjInput form a

product family (they share methods defined in their base class vjInput) but differ in their

functions to get input data. The various positional device drivers form a subfamily because they

not only share the base class’ functions (vjInput and vjPos) but also have additional methods in

them.

 From the user’s perspective, the product line requirements in DECIMAL are arranged in

a hierarchical structure similar to a file system. A subfamily is treated as another product family

in that it may have its own set of variabilities, commonalities, and constraints in addition to those

it inherits from its parent. By providing a subfamily with its own database table, DECIMAL can

perform the checks on the subfamily, but must also make sure that its parent’s commonalities,

variabilities, and dependency constraints are satisfied.

 All the checks that DECIMAL automates can be performed manually. However, since

checking dependency constraints is labor-intensive and confusing to non-experts in the domain,

automation encourages more thorough verification in practice. DECIMAL supports traceability

of the product-line requirements to later development artifacts both by recording changes made to

the requirements and by lowering the overhead of maintaining adherence to the constraints

through its automated checks.

 With regard to scalability, we have not performed experiments regarding the size at

which the use of DECIMAL becomes cost-effective for a project. Initial use indicates that the

key factor for determining the breakeven point is the number of constraints to be checked. When

the number of constraints to be checked (numConst) and/or the number of members to be built

(numMem) are high, the overhead involved in populating the database (which scales linearly with

the number of requirements, numReq) is acceptable. We hypothesize that use of DECIMAL is

cost-effective when numConst × numMem > numReq. The use of SQL for the tool promotes

scalability by allowing growth of the database to be linear in the number of requirements

(commonalities and variabilities). It is possible for the number of dependency constraints to grow

exponentially but in successful product lines they seldom do, since project risk-management tools

tend to throttle dependency constraints (Clements and Northrop, 2002).

7. Conclusion

 This paper describes DECIMAL, a tool for the requirements specification and

verification of a product line. DECIMAL provides automated checking of completeness,

consistency, and range and type, between a specified product line and an envisioned new system

in the product line. The most significant contribution of the tool is its capability to check that

dependency relationships among the values of the variabilities are maintained in the new system

being specified. Industrial users of product lines have indicated a strong need for automated tool

support for product-line requirements verification. DECIMAL provides a step toward filling that

need.

Acknowledgements

 We thank Allen Bierbaum, Carolina Cruz-Neira and, in particular, Christopher Just, all of

the Virtual Reality Applications Center, Iowa State University, for providing us with information

about the VR Juggler device drivers.

References

Ardis, M., Daley, N., Hoffman, D., Siy, H., and Weiss, D. 2000. Software product lines: a case

study. Software Practice and Experience, 825-847.

Ascension Technology Corporation. http://www.ascension-tech.com/

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D. Paech,

B., Wust, J., and Zettel, J. 2002. Component-based Product Line Engineering with UML,

London: Addison-Wesley.

Bass, L., Clements, P., Donohoe, P., McGregor, J., and Northrop, L. 1999. 4th Product Line

Practice Workshop Report, CMU/SEI-2000-TR-002, Software Engineering Institute, CMU.

Bierbaum, A. 2000. VR Juggler: A Virtual Platform for Virtual Reality Application

Development. MS Thesis, Iowa State University, Ames, IA.

Clements, P. and Northrop, L. 2002. Software Product Lines. Boston: Addison-Wesley.

Doerr, J. 2002. Requirements Engineering for Product Lines: Guidelines for Inspecting Domain

Model Relationships. Diploma thesis, University of Kaiserslautern.

Feather, M. S. 1998. Rapid application of lightweight formal methods for consistency analyses.

IEEE Trans. Software Eng. 24. pp. 949-959.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. 2003. Fundamentals of Software Engineering, 2nd ed.

Upper Saddle River, NJ: Prentice-Hall.

Gomaa, H. 1995. Reusable software requirements and architectures for families of systems,

Journal of Systems and Software, 28:189-202.

Griffeth, N. D. and Velthuijsen, H. 1994. The negotiating agents approach to runtime feature

interaction resolution. Feature Interactions in Telecommunications Systems, ed. Bouma, L.

G. and Velthuijsen, H. IOS Press, Amsterdam, 217-235.

Homayoon, S., Singh, H. 1988. Methods of addressing Interaction of Intelligent network Services

with Embedded Switch Services IEEE Communications Magazine, 26(12): 42-70

Jaring, M. and J. Bosch. 2002. Representing variability in software product lines: a case study.

Software Product Line Conf (SPLC2), ed. Chastek, G. LNC2379, Berlin Heidelberg:

Springer Verlag, 15-36.

Just, C., Bierbaum, A., Baker, A., and Cruz-Neira, C. 1998. VR Juggler: a framework for virtual

reality development. 2nd Immersive Projection Technology Workshop, Ames, IA.

Lam, W. 1998. A case study of requirements through product families. Annals of Software

Engineering: 253-277.

Lee, K., Kang, K. C., Chae, W. and Choi, B. W., Feature-based approach to object-oriented

engineering of applications for reuse. Software—Practice and Experience, 30: 1025-1046.

Li, H., Krishnamurthi, S. and Fisler, K. 2002. Verifying cross-cutting features as open systems.

10th ACM SIGSOFT Symp. Foundations of Software Eng. Charleston, SC, pp. 89-98.

Lutz, R. 2000. Extending the product family approach to support safe reuse. Journal of Systems

and Software, 53: 207-217.

Lutz, R. and Gannod, G. 2003. Analysis of a software product line architecture: an experience

report. Journal of Systems and Software, 66: 253-267.

Parnas, D. 1976. On the design and development of program families, IEEE Trans Software Eng,

2.

Padmanabhan, P. 2002. DECIMAL: A Requirements Engineering Tool for Product Families.

M.S. thesis, Iowa State University, Ames, IA.

Padmanabhan, P. and Lutz, R. 2002. DECIMAL: a requirements engineering tool for product

families. Int’l. Workshop Requirements Eng. For Product Lines (REPL’02), Essen, Germany,

pp. 39-44.

VRCO TrackD http://www.vrco.com/products/trackd/trackd.html

Weiss, D. and Lai, C. 1999. Software Product Line Engineering: A Family-Based Software

Development Process. Reading, MS: Addison Wesley.

Zave, P. 2001. Requirements for evolving systems: a telecommunications perspective. 5th Int’l

Symp. Requirements Eng., pp. 2-9.

