
Automated Software Engineering, 13, 169–193, 2006
c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

PLFaultCAT: A Product-Line Software Fault Tree
Analysis Tool∗

JOSH DEHLINGER dehlinge@cs.iastate.edu (http://www.cs.iastate.edu/∼dehlinge)
Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011

ROBYN R. LUTZ rlutz@cs.iastate.edu (http://www.cs.iastate.edu/∼rlutz)
Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA, 50011 and Jet Propul-
sion Laboratory/Caltech, Pasadena, CA, 91109

Abstract. Industry currently employs a product line approach to software development and deployment
as a means to enhance quality while reducing development cost and time. This effort has created a climate
where safety-critical software product lines are being developed without the full range of accompanying safety
analysis tools available to software engineers. Software Fault Tree Analysis (SFTA) is a technique that has
been used successfully to investigate contributing causes to potential hazards in safety-critical applications.
This paper further extends the adaptation of SFTA to product lines of systems by describing a software
safety analysis tool called PLFaultCAT. PLFaultCAT is an interactive, partially-automated support tool to aid
software engineers in the application of product-line software SFTA. The paper describes the integration of
product-line SFTA and PLFaultCAT with the software development life cycle. The description includes the
initial construction of the product-line SFTA as well as the automated derivation of software fault trees for
product line members. The technique and tool are illustrated with a small case study throughout the paper.

Keywords: product-line engineering, software fault tree analysis, safety analysis tools, hazard analysis

1. Introduction

Reusability has transformed entire industries and caused software engineers to adapt
their methods to further this goal. The software product-line concept supports reuse by
developing a suite of products sharing core commonalities (Clements, 2002). However,
development of safety-critical software product lines in industry has emerged ahead of
the development of product-line, safety analysis techniques and tools. This has created
a lack of techniques and tools available to software engineers to ensure the safe reuse of
software components throughout a product line (Lutz, 2000). It is only after a full suite
of safety analysis tools and techniques are available to software engineers to ensure the
safety in safety-critical product lines that safety-critical software product lines will gain
organizational and industrial acceptance and assume more responsibility in everyday
safety-critical applications.

This paper offers additional assurance to software engineers by providing a software
safety analysis tool, called PLFaultCAT (Product-Line Fault Tree Creation and Analysis

∗This paper is an extended version of the paper “Software Fault Tree Analysis for Product Lines” presented
by the authors at HASE, 2004, Tampa, FL. March 2004.



170 DEHLINGER AND LUTZ

Tool). This tool builds on a previously developed technique that adopted Software
Fault Tree Analysis (SFTA) to product line safety analysis (Dehlinger and Lutz, 2004).
PLFaultCAT is an interactive, partially-automated software support application to aid
software engineers with the visualization and pruning process of a product-line SFTA.
Specifically, the tool exploits the reusability inherent in product-line engineering by
deriving reusable safety analysis assets (i.e., the product-line members’ fault trees) for
future systems within the existing product line.

The product-line SFTA maintains the safety analysis qualities of traditional SFTA
while accommodating reusability in product-line engineering. Traditional SFTA targets
the safety analysis of potentially harmful states for a single product. The product-line
SFTA, however, incorporates the variabilities among the different products and con-
tributes to the safety analysis for the entire product line without performing traditional
SFTA serially on each product-line member. A new SFTA for a product line member
can be derived almost automatically with PLFaultCAT using its pruning algorithm. The
aim of this technique and tool is to support the confident reduction of the safety analysis
needed on a new product in the product line and, ultimately, a less expensive and shorter
product development process.

The contribution of this paper is to further investigate how and to what extent the
product-line SFTA technique, supported by the PLFaultCAT tool, can be used by software
engineers as a reusable safety analysis. Our approach employs Ardis and Weiss’ Family-
Oriented Abstraction, Specification, and Translation (FAST) model (Ardis and Weiss,
1997). This model employs a two-phase software engineering approach: the domain
engineering phase and the application engineering phase (Weiss and Lai, 1999). The
domain engineering phase defines the product line and constructs the product-line SFTA
with the aid of the PLFaultCAT tool; the application engineering phase develops and
performs the safety analysis on new product-line members. We first provide a framework
for the construction, aided by PLFaultCAT, of a product-line SFTA during the domain
engineering phase and then supply the means for reusing the product-line SFTA for new
members as it is implemented in the PLFaultCAT tool. Within the application engineering
phase we utilize PLFaultCAT to facilitate the derivation of new product-line members’
fault tree(s).

Figure 1 provides an overview of this two-phased technique. The role of PLFault-
CAT in this framework primarily resides in the application engineering phase. Although
PLFaultCAT can assist in the initial graphical representation of a product-line fault
tree, the chief contribution of the PLFaultCAT tool is to automatically produce the fault
tree artifacts that software engineers desire at the end of the application engineering
phase.

The remainder of the paper is organized as follows. Section 2 describes background
information and related work in product line engineering and safety analysis. Section 3
presents an overview of PLFaultCAT and discusses its software architecture. Section 4
describes the construction of the product-line SFTA using PLFaultCAT for the Floating
Weather Station (FWS) product line from (Ardis and Weiss, 1997; Weiss and Lai, 1999)
to illustrate the approach and the use of PLFaultCAT. Section 5 discusses how to use
the product-line SFTA to generate a product-line member’s individual software fault
tree(s). This section details the process of pruning a product-line SFTA to generate a
single member’s SFTA and illustrates how PLFaultCAT can be employed to perform the



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 171

Figure 1. An overview of the product-line SFTA technique.

pruning automatically. Section 6 presents an evaluation and analysis of the product-line
SFTA technique using PLFaultCAT. Finally, Section 7 provides concluding remarks and
future research directions.

2. Background and related work

The work presented here builds upon the increasingly overlapping areas of software
safety analysis and software product-line development. This section discusses back-
ground information and related work in these areas of software engineering.

2.1. Safety-critical systems

Safety-critical systems can directly or indirectly compromise safety by placing a system
into a hazardous state causing the potential loss or damage of life, property, information,
mission, or environment (Leveson, 1995). Safety-critical software systems are being
assimilated into our everyday lives in a vast range of domains and markets (Lutz, 2000).
Safety-critical software runs applications such as pacemakers, aircraft flight-control
systems, military weapons systems and nuclear power monitoring systems.

Just as autonomous software products have caused accidents, product-line software
applications have also contributed to catastrophic losses. For example, the Therac-25
medical system and the Ariane 5 losses were accidents caused, in part, by product-line
engineering mistakes (Leveson, 1995; Sommerville, 2004).



172 DEHLINGER AND LUTZ

2.2. Safety analysis techniques

The following subsection describes two of the most common safety analysis techniques
used by software engineers on safety-critical software: Software Fault Tree Analysis
(SFTA) and Software Failure Modes and Effects Analysis (SFMEA). The first technique
is the focus of this research. The second technique, when available, complements and
aids in the development of a product-line SFTA.

2.2.1. SFTA. SFTA is a traditional safety analysis technique that has proven to be an
essential tool for software engineers during the design phase of a safety-critical software
product (Hansen et al., 1998; Leveson, 1995; Lutz and Woodhouse, 1997; Pai and Dugan,
2002). SFTA is a top-down, backward search method utilizing Boolean logic to depict
the causal event contributing to an undesirable event (the root node). The intermediate,
causal event nodes combine with logic gates to describe how the parent node event can
occur.

SFTA is a backward search analysis. Analysis begins at the root node with the engineer
describing all possible causes of the root node through the event nodes and logic gates
of the immediate lower level of the tree. For safety-critical systems, the root node of
the tree will often represent a system-wide, catastrophic event taken from a preexisting
hazards list (Leveson, 1995). The hazard represented by the root node is hypothesized to
have occurred, and the engineer proceeds to determine the set of necessary preconditions
causing the root node. The set of possible causes are joined to the parent node by standard
logical relations represented via logic gates to describe their contributing relation. This
process continues through each level of the constructed subtree until basic events are
reached or until the appropriate level of subsystem detail is achieved.

Previous research in SFTA has represented multiple possible outcomes of a compo-
nent failure, for example, depending on whether a warm spare is available (Coppit and
Sullivan, 2003; Pai and Dugan, 2002). However, these results describe single-system
behavior rather than the product-line behavior of concern here.

2.2.2. SFMEA1. SFMEA is a tabular, forward-based search technique. Unlike SFTA,
SFMEA is a bottom-up method since it starts with the failure of a component or sub-
system and then looks at its effect on the overall system. SFMEA first lists all the
components comprising a system and their associated failure modes. The effects on
other components or subsystems are evaluated and listed along with the consequence on
the system for each component’s failure mode(s). Like SFTA, SFMEA is only as good
as the domain and system expertise of the analyst.

2.3. Software product-line engineering

A software product line is defined as “a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way” (Clements and Northrop, 2002). The members of a particular product
line differ from each other via a set of allowed variabilities/features.



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 173

The benefits of the product-line concept come from the reuse of the commonalities
of the product line in the development of a new product-line member (Sommerville,
2004). Thus, the assets gained from the initial engineering of the product line, such as the
underlying architecture, requirements, safety analyses and testing, can be at least partially
applied to any new product-line member. In this sense, product line engineering allows
for the amortization of costs in startup development and analysis of the initial product
line members over the development of the entire product line. In fact, studies suggest
that the product-line engineering concept can reduce the development and production
time as well as the overall cost and increase the product quality by a factor of 10 times
or more (Schmid and Verlage, 2002).

Requirements for product lines are often identified and specified through a Common-
ality and Variability Analysis (CA). The CA, as detailed by Ardis and Weiss (1997)
and Weiss and Lai (1999), provides a comprehensive definition of the product line that
details the commonalities, variabilities and inherent dependencies of the product line.
This analysis technique aids in providing relevant domain definitions, the core set of
product traits and the scope of the product line.

Commonalities describe requirements of the entire product line. Variabilities capture
specific features not contained in every member of the product line. Variabilities also
frequently have associated “parameters of variation” that detail the degree to which the
variability can occur (Weiss and Lai, 1999). The parameters of variation describe the
acceptable range of variation.

A variability’s parameters of variation within a product line often fall into one of
three categories: Boolean parameters of variation, enumerated parameters of variation,
or range parameters of variation. These categories of parameters of variation get increas-
ingly more difficult to analyze for safety as the complexity in the number of choices
increases. Boolean parameters of variation are those variabilities that can either be
present within a product-line member or not. An enumerated parameter of variation is
any variability in which the product-line member must choose from a relatively small
list of values for a particular variability. A simple example of an enumerated parameter
of variation is “Widget X can either be blue, green, red, or yellow”. A range parameter
of variation are those variabilities in which the product-line member must have a pre-
cise number associated with the variability, where the number lies within the range of
acceptable parameters of variation specified in a CA. For example, “Widget X may have
between 1 and 100 user functions” is a simple range parameter of variation.

A product-line dependency restricts and/or dictates some combinations of variability
subsets from being viable products in the form of “mutual exclusion” or “requires” vari-
ability dependencies (Kang et al., 1999; Doerr, 2002). A dependency requirement can
thus take the form “Any product-line member that has Variability A can not also have
Variability B” or in the form “Any product-line member that has Variability C must also
have Variability D”. Dependency requirements can derive from actual physical limits, un-
desired or infeasible combinations of behaviors, user restrictions, or business decisions.
Building a new product in the product line (application engineering) entails selecting
values for all the parameters of variation consistent with the dependencies as detailed
in the CA. To aid in this, Padmanabhan and Lutz developed DECIMAL, a requirements
validation tool to certify that a set of requirements for a proposed product line member



174 DEHLINGER AND LUTZ

does not breach the dependencies or constraints of the product line (Padmanabhan and
Lutz, 2002).

Dependency requirements are especially important for the hazard analysis of a prod-
uct line and should be explicitly documented. By reducing the subset of potential viable
products stemming from the product-line definition, we reduce the scope of needed haz-
ard analysis considerations. With product-line SFTA, such constraints often significantly
reduce the number of subtrees.

Earlier work has investigated the application of various safety analysis techniques
to product line requirements. In earlier work Lutz specified a telescope subsystem as
a product family and incorporates bi-directional safety analysis to identify additional
requirements (2000). Similarly, Lutz et al. performed a forward and backward search for
hazards on representative members of a flight instrumentation display product family
in hopes of deriving additional safety requirements (1998). The work described here
advances Lu and Lutz’s Fault Contribution Tree Analysis (FCTA) (Lu and Lutz, 2002)
for product lines by utilizing the more familiar fault tree methodology and by accommo-
dating the use of commonality and variability values within the analysis and depiction
of the product-line SFTA.

3. PLFaultCAT overview and software architecture

This section introduces and briefly describes the PLFaultCAT tool. PLFaultCAT is the
software tool developed to aid in both the domain engineering phase for initial product-
line software fault tree analysis (SFTA) development and representation as well as in the
application engineering phase for the derivation of product line members’ software fault
tree(s) from the product-line software fault tree(s) developed in the domain engineering
phase. In this section, we present an overview of the PLFaultCAT tool in Section 3.1
and give a description of the software architecture in Section 3.2.

3.1. PLFaultCAT overview

PLFaultCAT is a tool-assisted visualization and pruning application for the creation
and analysis of product-line software fault trees. PLFaultCAT is an extension of the
FaultCAT application (Burgess, 2003). FaultCAT is an open-source fault-tree creation
tool written in Java that is primarily geared towards analyzing a system for faults to
determine how faults can affect other parts of the system (Burgess, 2003). FaultCAT
does this by attaching fault probabilities to each node. FaultCAT provides a user the
ability to graphically construct and represent the nodes and logic gates of a traditional
fault tree. A complete discussion of the construction of a product-line software fault tree
using PLFaultCAT is given in Section 4.

PLFaultCAT stores the fault trees internally in an XML format, making it easy to
manipulate and alter them. This is important because product lines routinely evolve, and
the safety analysis must accordingly be updated. PLFaultCAT builds on the existing XML
storage format of a fault tree in FaultCAT. During the pruning process of the application



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 175

Figure 2. Software architecture of PLFaultCAT.

engineering phase, PLFaultCAT utilizes the XML DOM parser to perform the pruning
necessary to generate a product-line member’s fault tree(s) from the product-line SFTA.
A full discussion of the pruning algorithm and how it is handled in PLFaultCAT is given
in Section 5. In addition to the graphical and XML views of the fault tree, PLFaultCAT
presents a textual overview of a fault tree that lists the nodes of a fault tree, the type of a
leaf node (either a commonality or a variability) and the value of a leaf node commonality
or variability. Section 4.1, Step 3 describes these values in detail.

3.2. PLFaultCAT software architecture

The PLFaultCAT software architecture is built directly upon the software architecture of
the original FaultCAT application. Thus, the majority of the PLFaultCAT tool inherits
the base software architecture of FaultCAT. PLFaultCAT enhances FaultCAT by adding
onto the software architecture the functionality needed to accommodate the creation
and analysis of product-line software fault trees. Figure 2 shows the architecture of the
PLFaultCAT application.

PLFaultCAT maintains all the functionality of FaultCAT and can still accommodate
the creation and analysis of a single product software fault tree. To achieve this, the
original FaultCAT software architecture, including the class structures, is maintained.
Any additional functionality added to the already existing classes of FaultCAT has been
tested to ensure that it does not interfere with FaultCAT’s original functionality.

3.3. Implementation of PLFaultCAT

The major contribution of the PLFaultCAT tool is to add the nearly automatic prun-
ing process of deriving a product-line member’s fault tree from the product-line SFTA.



176 DEHLINGER AND LUTZ

Within PLFaultCAT this was implemented as additional Java classes not found in Fault-
CAT. These Java classes provide the interactive, GUI-driven interface to allow a user to
actively select the variabilities to include in any new product-line member. The selected
variabilities then are used to properly prune the stored product-line SFTA to produce the
derived product-line member’s software fault tree.

To facilitate the creation of a product-line software fault tree, PLFaultCAT provides
the ability to define a leaf node within a fault tree to be a fault associated with either a
commonality requirement/component or a variability requirement/component. Defining
leaf nodes as being coupled either to a commonality or a variability allows for the pruning
process to determine which branches or subtrees are relevant for a given fault tree and
a selected set of variabilities.

Lastly, PLFaultCAT provides the ability to specify the value(s) for a particular com-
monality or variability comprising the product line. Assigning the value(s) of a par-
ticular commonality or variability to a leaf node within a fault tree provides (1) an
association of the leaf node with specifically what the choice of variability must be in
order to contribute to its parent event node and its associated subtree and (2) a prun-
ing algorithm to decide which branches or subtrees can be pruned for a given new
member.

4. Domain engineering—Constructing the product-line SFTA

The safety analysis for domain engineering of product lines uses results from the Pre-
liminary Hazard Analysis (PHA). A PHA identifies the systems’ hazards at an early
stage of development with the aim of determining their impact on the system (Leveson,
1995). A domain hazards list will often exist prior to the development of the product
line. If no preexisting hazards list is available, procedures exist to establish a workable,
comprehensive list (Douglass, 1999). The creation of the hazards list requires extensive
domain expertise and may be performed in parallel with the Commonality and Variability
Analysis (CA) described in Section 2.3. Alternatively, states from the “Possible Effects”
column of the Software Failure Modes, Effects and Criticality Analysis (SFMECA) table
can be used as a source of hazards for the root nodes of the product-line Software Fault
Tree Analysis (SFTA) as they represent states that must be avoided.

Following the initial product line requirements acquisition in the FAST method, a
precise definition of the members of a product line is achieved through the creation
of a CA. Figure 3 provides a portion of the CA for a representative Floating Weather
Station (FWS) from (Ardis and Weiss, 1997) and (Weiss and Lai, 1999) that will be used
as a running example to illustrate the activities involved in the domain and application
engineering phase use of PLFaultCAT and the product-line SFTA technique. In particular,
figure 3 displays the commonalities, variabilities and dependencies associated with the
wind speed detection, calculation and communication within the FWS. Figure 4 gives a
portion of the Parameters of Variation document detailing the allowable options for the
variabilities listed in figure 3.

A product-line SFMEA searches the failure modes possible in the product line, de-
termines their potential effects in the product line and establishes their potential effects



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 177

Figure 3. An excerpt of the FWS commonality and variability analysis.

Figure 4. An excerpt of the FWS Parameters of Variation.



178 DEHLINGER AND LUTZ

Figure 5. A portion of the FWS software fault modes and effects analysis.

on each member (Lutz et al., 1998). An excerpt of the SFMEA for the FWS is given
in figure 5. This portion of the SFMEA includes only those failure modes relevant to
the requesting vessel receiving a corrupt wind speed report format from the FWS. Note
that while this particular SFMEA concentrates mainly on the software failures of the
FWS, it does include those hardware failures (which will typically appear as leaf nodes)



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 179

that contribute to the propagation of software failures. If a SFMEA exists, this analysis
can produce the necessary domain knowledge to begin construction of the product-line
SFTA using the prescribed steps detailed in Section 4.1. If a SFMEA does not exist, con-
struction of the product-line SFTA proceeds directly to Step 2 below after assembling
an intermediate node tree without the aid of a SFMEA.

4.1. Product-line SFTA construction

The construction of the product-line SFTA using PLFaultCAT proceeds through three
basic steps:

Step 1: Determine the root node and generate the intermediate node tree. As ex-
plained above, the root node hazard of any SFTA often derives from a preexisting
hazards list or a list generated during the PHA phase (possibly from an SFMEA).

Causal events can be viewed as contributing events to the root node and are derived
from the SFMEA or equivalent domain expertise. The SFMEA provides the causal events
in the “Cause of Failure” column as well as the potential contributing nodes leading to
the causal event. Gathering the causal events, we construct an intermediate node tree
to establish the cause-event hierarchy. The intermediate node tree, while not necessary
in the construction of a product-line SFTA, aids in jump-starting the organization and
analysis of the product-line SFTA. Essentially, the intermediate node tree represents a
typical fault tree without the Boolean logic gate relationships between causal events and
effects. To determine the intermediate node tree using this process, we use the following
PL-SFTA CREATE algorithm starting with the root node event as the initial event:

PL-SFTA CREATE(event):
STEP 1 Create node in tree for event
STEP 2 If node is not root node then

STEP 2.1 Attach node to parent node
STEP 3 Scan SFMEA “Possible Effects” column for event
STEP 4 For each row with event found do

STEP 4.1 event = event listed in “Cause of Failure” column
STEP 4.2 PL-SFTA CREATE (event)

Following this algorithm, an intermediate node tree is created. Note that this inter-
mediate node tree does not contain any Boolean logic gates, nor does it include any
information tying the variabilities to the hazard. Applying this algorithm for the root
node “Inaccurate wind speed reported” yields the tree depicted in figure 6 as one of the
four, second-level subtrees that could potentially cause the root node hazard. Note that
an “Inaccurate wind speed reported” event is not necessarily a hazard but is a failure that
might contribute to a hazard in some scenarios (e.g., if a ship or aircraft is dispatched in
unsafe weather conditions based on this failure).

PLFaultCAT offers no distinct functionality to aid in completion of this step of the
product-line software fault tree creation. In fact, PLFaultCAT cannot graphically con-
struct a tree as shown in figure 6 without Boolean logic gates relating causal events to the



180 DEHLINGER AND LUTZ

Figure 6. FWS intermediate node tree.

affected events (this is a result from inheriting the software architecture and functionality
of the original FaultCAT tool). Rather, the intermediate node tree, constructed manually,
acts as an input to PLFaultCAT.

Step 2: Refine the intermediate node tree and input into PLFaultCAT. The interme-
diate node tree produced in Step 1 can contain nodes that do not reflect the level of
detail needed. A single node could actually be the effect of a combination of causes not
captured in the SFMEA since SFMEA typically cannot capture a series of causes leading
to a failure event. Thus, domain expertise is needed to analyze the tree for completeness,
capture additional events leading to a failure, and refine nodes as needed. Using our in-
termediate node tree shown in figure 6 for example, it may be desirable to further detail
the causes of the node “Computer memory failure” or, if possible, reference a separate
fault tree for this failure that details the causal factors.

Depending on the level of detail presented in the SFMEA, it may provide insight into
what kind of logic gate should be applied to join children event nodes to their parents.
Traditionally, SFMEA only considers a single failure at a time, thus implying logical
OR gates throughout a SFTA. This is even more evident when the SFMEA distinguishes
the variabilities from each individual failed Item/Event. However, our experience has
shown that some detailed SFMEAs provided enough causal information to warrant a
logical AND gate. For example, using our SFMEA, shown in figure 5, as well as the
intermediate node tree, shown in figure 6, we can infer that the nodes “BIT check failure”
and “Computer memory failure” must be joined by a logical AND gate in order to cause



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 181

the “Memory corruption” node. Intuitively, this makes sense. Because of the advanced
error trappings inherent in the FWS, the software will only incur corrupt memory if
there indeed has been a memory failure and the FWS BIT check test, which is executed
periodically, has failed to catch the corrupt memory. The caveat is that the SFMEA
should only be used as a heuristic aided by domain knowledge and experts to produce
the ultimate logic gate represented in the product line SFTA. Thus, the SFMEA should
be mined to extract as much relevant information as possible to assist the construction
of the product-line SFTA.

In addition to refining each node, we apply domain knowledge to determine the
necessary logical combination of the children nodes to cause the parent node. This is a
similar process to traditional fault tree analysis. Using the PLFaultCAT tool and applying
Step 2 to the intermediate node tree, found in figure 6, yields the intermediate software
fault tree depicted in figure 7.

Aside from allowing the user to graphically construct a fault tree, PLFaultCAT allows
an annotated description of each node so that the user can attach further details. This
is especially advantageous in that it provides traceability to the hazard analysis. It also

Figure 7. FWS product-line intermediate software fault tree in PLFaultCAT.



182 DEHLINGER AND LUTZ

can be used to cross-check the completeness of the SFMEA by ensuring that all hazard
events in the SFTA map to a cause or effect in the SFMEA (i.e., one-way traceability).

Step 3: Consider the influence of variabilities on all leaf nodes and tag each node
accordingly. This is the crux of the product-line construction. In this step we employ
a bottom-up approach to analyze each leaf node and determine which commonalities
and/or variabilities contribute to causing the root node event to occur. In doing this, we
associate the range of commonality and variability choices for any individual product-
line member with how it might influence a particular hazard. Not every commonality or
variability will have an influence or appear within any given fault tree. However, every
leaf event node should have either an associated commonality, variability, and/or basic
(primary) event.

When considering a variability’s influence on a particular leaf node, we consider the
parameters of variation allowed. While many variabilities are features that are simply
present or not present in a product, some variabilities represent an allowable numerical
or enumerated range for a particular feature. Considering the influence of a present
or absent variability on an event is straightforward; we analyze the influence of the
variability being present within the product and not functioning as designed.

If, however, we need to consider an enumerated or range type of variability, we must
consider the various possibilities within the variability and their influence on fault tree
events. For large ranges, safety analysis on each potential variability choice would be
infeasible. Thus, class ranges are used to determine how different ranges could affect
contributing events (Sommerville, 2004). Looking at the node “Incorrect units used in
report” in our example, shown in figure 7, and consulting the CA, shown in figure 3, we
conclude that this failure node can only occur if the FWS has the feature (variability)
that it can report the wind speed in units other than knots. Thus, we annotate this node
accordingly to indicate that the node “Incorrect units used in report” can only occur
when either one of the variabilities (MPH units used or KPH units used) is present in a
product line member. The representation of this is shown in figure 8.

Using PLFaultCAT makes associating a commonality and/or variability with a failure
node straightforward. The PLFaultCAT interface allows you to label the “Basic Event”
nodes, depicted as circles, as a Variability (shown in figure 8 under the heading “Pri-
maryEvent type”) as well as defining a label or ID for the variability (the textbox under
the heading “Variability ID”). In figure 8, the variability (feature) has the label “V =
MPH units used”. The “Variability ID” describes the variability (feature) so that it will
be recognizable later when selecting the variabilities to include in a new product line
member. For this example, we simply annotate “Wind speed in MPH” to indicate that a
product line member may or may not have this variability (feature).

The consideration of numerical ranges or values is particularly important because
often not all values of a variability will contribute to a failure. Applying equivalence
class partitioning and boundary value analysis concentrates on the fringe numbers and
other frequently error-prone ranges to improve coverage of possible vulnerabilities.
Using our FWS example, we can see from the Parameters of Variation document, shown
in figure 4, that we indeed have a numerical range variability: the number of wind speed
sensors may vary between 1 and 5 sensors. For our product-line SFTA for the hazard
“Incorrect wind speed reported” we encounter the situation where the variability of



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 183

Figure 8. Depicting the influence of variabilities on an event in PLFaultCAT.

multiple wind sensors can cause a failure node and the commonality of having one wind
sensor will not. PLFaultCAT accommodates this case by specifying the variability, as
shown in figure 8, by labeling it a “Variability” PrimaryEvent Type and specifying in
the “Variability ID” field a label indicating that multiple wind sensors must be present
in the product line member to cause the parent failure node. This same approach would
be utilized for any enumerated variability.

Applying this step to our FWS example using the CA, shown in figure 3, as well
as the SFMEA, shown in figure 5, we constructed a 92-node product-line SFT using
PLFaultCAT for the root node hazard “Inaccurate wind speed reported”. Specifically,
the product-line SFT included 55 failure nodes and 37 variability/commonality nodes
(of which 13 nodes were for variabilities and 24 for commonalities). Additionally, the
product-line SFTA for this particular hazard included 7 different variability instantiations
contributing to failures.



184 DEHLINGER AND LUTZ

Throughout the development and construction of the product-line SFTA we associate
commonalities and/or variabilities with each leaf node in the intermediate node tree de-
veloped in Step 2. This process may yield both a commonality and variability being asso-
ciated with a single failure node. In this case, intuition may suggest disregarding consider-
ation of the variability since the causal event will always be present due to the presence of
the associated commonality node. However, the risk of failure posed by the commonality
may be mitigated while the risk posed by the variability remains. Hence, the variability
must be retained to aid in the analysis of the product line, especially as the product line
evolves.

Neither the construction of a product-line SFTA nor PLFaultCAT captures product-
line dependencies. This is because the role of the product-line SFTA is to give as com-
plete an account as possible of potential contributing causes to the root node. Note that
the product-line SFTA does not enforce existing product-line dependencies. Instead,
it represents all possible permutations of choices of values of product-line members
and relies on dependency enforcement prior to the application engineering phase as in
(Padmanabhan and Lutz, 2002).

Since SFTA adopts a slightly different perspective when viewing the product line, it is
not uncommon to discover missing requirements. The construction of the product-line
SFTA in PLFaultCAT may have some feedback effect on the CA in terms of discovering
previously unidentified dependencies. Similarly, missing commonalities and variabili-
ties, or incorrect parameters of variation may sometimes be identified via this process.

It is interesting to note that the influence of variabilities on hazards will not necessarily
“sink to the bottom” of the fault tree but can instead be dispersed throughout the tree.
Variabilities are commonly thought of as refinements of commonalities so the expectation
is that they will only influence the root node from the lowest levels of the fault tree (Lu and
Lutz, 2002). However, we found that this was not always the case. Variabilities, especially
in software, are sometimes add-on features to the system rather than refinements of a
commonality. Feature-oriented variabilities can spawn refinement variabilities of their
own. Situations like this can lead to a product-line SFTA where variabilities are spread
throughout the levels of the tree rather than clustered at the bottom.

It is important to note that the method outlined in Steps 1–3 is an iterative process
that is repeated for all hazards in the hazards list. This will produce a set of product-line
software fault trees.

4.2. Deriving additional safety requirements from the product-line SFTA

The product-line SFTA can aid in the discovery of latent safety requirements by iden-
tifying high-risk variabilities and common causes and by identifying new constraints.
The product-line SFTA construction process produces a set of fault trees with the cor-
responding contributing commonalities and variabilities attached to the appropriate leaf
nodes. Using this set of software fault trees, we can identify or even tabulate the most
frequent variabilities that contribute to the root node hazards. If certain variabilities con-
tribute to root node hazards, additional safety requirements and/or hazard analysis may
be warranted to mitigate their contribution to hazard nodes.



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 185

Figure 9. Generic product-line SFTA.

Any high-level event node within a product-line SFTA that has two or more vari-
abilities connected by an AND gate may warrant a new constraint. Introducing a new
product-line constraint limiting the variability combinations in this situation can pre-
clude occurrence of this event node and potentially rid the product-line SFTA from this
hazard altogether. However, care must be taken in deriving new product-line dependen-
cies so that the product line is not too limited. The hazard severity as well as the existence
of alternative preventive measures must be weighed against the addition of product-line
dependencies.

Figure 9 shows a generic example of the derivation of a new product-line constraint
from a logical AND gate connecting two variabilities. This example shows that we can
mitigate the “Causal Event” node by restricting a system in the product line from having
both V1 and V2 features. If this is found to be an acceptable solution, the product-line
SFTA then retains the “Causal Event” subtree for completeness, but the occurrence of
the subtree becomes unlikely.

Imposing additional safety requirements in the domain engineering phase improves
the product-line specifications and reduces rework in the application engineering phase.
The safety requirements and/or product-line dependencies derived from the product-line
SFTA can reduce the analysis needed and time-to-market for new products.

PLFaultCAT offers limited ability to assist the process of deriving additional safety
requirements within the domain engineering phase aside from offering a visualization
of the software fault tree. PLFaultCAT retains several functions from FaultCAT that



186 DEHLINGER AND LUTZ

may be useful in the analysis of the product-line SFTA for new safety requirements.
Functionality to display minimum cut sets is possible as well as the ability to assign
probabilities to each node and then show the highest probability path(s) of the fault tree.

5. Application engineering—Reusing the product-line SFTA

This section summarizes the reuse of the product-line Software Fault Tree Analysis
(SFTA) developed in Section 4 using PLFaultCAT when building new product-line
members. The application engineering phase, as illustrated in figure 1, defines a new
product-line member within the context of the previously defined requirements, com-
monalities and variabilities, and prunes the product-line SFTA, aided by PLFaultCAT, so
that the previously performed safety analysis can be reused. This section also discusses
the flexibility of the product-line SFTA in supporting product-line evolution as well as
limits on reuse.

5.1. Pruning the product-line SFTA

In product-line SFTA we use a pruning process followed by a structured inquiry to
develop a new product-line member’s SFTA from the product line SFTA. The reuse of
the product-line SFTA performed using PLFaultCAT for a new system in the product line
has three basic steps: selecting the variabilities for a new product line member, deriving
the product-line member SFTA, and applying domain knowledge, each of which are
described below.

Step 1: Select the variabilities for new product-line member. Producing a product-line
member entails a selection of which variabilities or features to include. This process can
include an ordering of variability selection (e.g., according to domain model techniques
in (Weiss and Lai, 1999)) or can leave the selection process to the system engineers.
PLFaultCAT facilitates the selection of product-line member’s variabilities through a
checkbox window that presents all possible variabilities. Figure 10 shows an example of
the variability selection window that will appear after a user clicks on the “Trim” button,
found in the main toolbar, and selects the appropriate, already stored, product-line SFT
XML file.

Typically, the selection of a set of variabilities does not guarantee a legal product-
line member. Rather, the choice of variabilities must satisfy the previously established
product-line dependencies and constraints. PLFaultCAT does not enforce nor check the
dependencies prescribed in the Commonality and Variability Analysis (CA). Instead,
other tools are capable of enforcing the dependencies and constraints detailed in the CA
for large, complex product lines (Padmanabhan and Lutz, 2002). PLFaultCAT is used
after the choice of variabilities has been determined to be legal.

For illustration purposes, we consider two different product-line members. The first
contains the features of having multiple wind sensors (between 2 and 5) and reporting
the wind speed in KPH. The second product-line member contains an emergency switch
feature. Thus, the features of these two products are as follows:



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 187

Figure 10. Selecting the product-line member’s variabilities in PLFaultCAT.

FWS A FWS B
• 2–5 wind sensors • Emergency switch
• Conversion logic • SOS signal software
• Wind speed in KPH • SOS reset signal

Both products also include all the commonalities described in the CA in addition to
these features and satisfy the CA dependencies (see figure 3).

Step 2: Derive the product-line member SFTA. After establishing and verifying a
product-line member, we prune the product-line SFTA to create a baseline SFTA for the
new system. The pruning process first uses a depth-first search to automatically remove
the subtrees that have no impact on the product-line member being considered and then
relies on a small amount of domain knowledge to further collapse and prune the SFTA.
The algorithm starts with the root node as node and proceeds as follows:

PL-SFTA SEARCH (node):
STEP 1 If node is not a commonality leaf or a selected variability then

STEP 1.1 Perform DFS for a selected variability or commonality node
STEP 1.2 If DFS returns true

STEP 1.2.1 For each child node do
STEP 1.2.1.1 PL-SFTA SEARCH(node)

STEP 1.3 If search returns false then
STEP 1.3.1 Remove subtree rooted at node

STEP 2 Else if node is an unselected variability then
STEP 2.1 Remove subtree rooted at node

A “selected variability” in our algorithm is an optional feature that is required in the
new system. For example, a particular FWS may be required to calculate wind speed in
KPH even though this feature is not a requirement of each system within the product
line. An unselected variability, however, is an optional feature or a value of a variability
not present in the new system.



188 DEHLINGER AND LUTZ

Figure 11. Prunning the product-line SFT in PLFaultCAT.

PLFaultCAT implements this algorithm using the variabilities specified to include in
the product-line member, as in Step 1. The tool processes the product-line SFT’s XML
file to create a new SFT including only those nodes associated with the commonalities
and chosen variabilities for the new system. In Step 3 of the domain engineering phase,
a label was attached to every variability by giving a variability name in the “Variability
ID” textbox. It is this label, for the chosen variabilities, that is searched for in the XML
file to decide whether a variability node should be retained. Upon completion of the PL-
SFTA SEARCH logic implemented in PLFaultCAT, the product-line member’s SFT is
displayed in the main PLFaultCAT viewer and a NewProductLineMember.xml file is
saved to the working directory of PLFaultCAT.

The subtree shown in figure 11 illustrates how the pruning algorithm executes within
PLFaultCAT to remove irrelevant subtrees. Using the PL-SFTA SEARCH algorithm for
FWS A, we see that the subtree under consideration contains neither a failure node asso-
ciated with a commonality or with a selected variability. Thus, the PL-SFTA SEARCH
algorithm used in PLFaultCAT will remove this entire subtree since it can have no in-
fluence on any of the parent failure nodes of this subtree. If, however, we consider FWS
B for the subtree illustrated in figure 11, we see that the entire subtree should be re-
tained since the selected variabilities all can have an influence on the failure nodes in
each path of the subtree. PLFaultCAT uses this logic in a depth-first fashion over the



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 189

entire product-line SFT to derive the product-line member’s SFT based on the selected
variabilities.

Using the 92-node product-line SFT constructed in Section 4 on the hazard “Inaccurate
wind speed reported”, PLFaultCAT was used to automatically derive the fault trees for
our representative product-line members: FWS A and FWS B. The initial execution of
PLFaultCAT reduced the number of failure nodes by approximately 16% for FWS A
and 13% for FWS B in the resulting product-line member fault trees.

The PL-SFTA SEARCH algorithm errs on the side of caution since it only marks
the subtrees that can be removed without review and does not actually do any pruning.
This is advantageous from a safety perspective because the application of the algorithm
simply indicates those subtrees where neither commonalities nor selected variabilities
can be found in the subsequent children nodes. This algorithm then defers the actual
pruning to the domain experts.

3: Apply domain knowledge. After removing the subtrees that had no bearing on the
product-line member under consideration, the tree may be able to be further pruned
and/or collapsed within PLFaultCAT. However, this step requires domain knowledge.
This also illustrates the limit to completely automated product-line SFTA reuse. Removal
of subtrees/nodes will often lead to orphaned logic gates or other opportunities to safely
simplify the product-line member’s SFT, as shown in figure 12.

Figure 12. Resulting pruned product-line member SFT in PLFaultCAT.



190 DEHLINGER AND LUTZ

Figure 13. Cleaned product-line member SFT in PLFaultCAT.

Collapsing orphaned OR gates is trivial. If there is only one causal event remaining,
we collapse the lower event into the parent event. If there is only one commonality or
variability leaf node remaining, we attach it to the parent event and remove the OR gate.

When AND gates are involved, we need to be more cautious. Intuitively, if at least one
input line to an AND gate is removed, the output event is impossible. However, it was
found that this is not always the case and thus each removal of an AND gate warrants
further scrutiny.

The clean up of the product-line member’s SFT presented in this step is a manual
process and must be pursued with utmost care. Enough information should be retained
within the product-line member’s fault tree to provide ample information for future
hazard analysis and mitigation strategies. It is in this light that the subtree shown in
figure 12 reduces to the subtree shown in figure 13 by removing the useless logic gates
and connecting the failure nodes.

Looking back at the two representative product-line members, the clean-up process
removed an additional five nodes from FWS A and two nodes from FWS B. Thus, the
number of nodes in the SFT for the FWS A product-line member was reduced by over
25% from the number of failure nodes in the original product-line SFT with PLFault-
CAT accomplishing most of the work automatically. Likewise, the FWS B product-line
member was reduced by 17% from the original product-line SFT’s failure nodes with
PLFaultCAT doing a majority of the work.



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 191

The application of domain knowledge to the fault tree resulting from Step 2 is a
beneficial step in the derivation of a product-line member’s SFT because it removes
the extraneous nodes and focuses attention on nodes that can potentially contribute to
failures in a specific product-line member.

5.2. Product-line evolution

It is often the case that additional variabilities are added as features to the initial product
line (e.g., as the consumer market changes). To safely include the new variabilities, we
must perform a limited amount of domain engineering and hazard analysis to incorporate
the new variabilities in order to ensure that future systems are safe. In particular, new
variabilities as well as new values for existing variabilities must iterate the relevant steps
in the two-phase framework illustrated in figure 1. This includes modifications to the
requirements specification (as needed), as well as to the Commonality and Variability
Analysis (CA) and SFMEA if they are affected.

In addition, the product-line SFTA is updated to incorporate the changes. If an SFMEA
was constructed, the addition of variabilities can add new rows to the SFMEA or
change the failures or effects in already existing rows in the SFMEA table. The PL-
SFTA CREATE algorithm, as detailed in Section 4.1, analyzes the new SFMEA rows
and any additions to the preexisting SFMEA rows that can be influenced by the inclusion
of the new variabilities. Following this process incorporates the new variabilities into the
product-line SFTA by including their causal event nodes in the fault trees. The graphical
view of the fault tree that PLFaultCAT provides makes updating the product-line SFT
to incorporate new variabilities (features) and to derive a new product-line member’s
SFTA efficient enough for it to be practical for projects to maintain the fault tree as a
current product-line artifact.

6. Evaluation and analysis

In the domain engineering phase PLFaultCAT did not provide any significant advantages
over other fault tree representation tools beyond providing the analyst with an additional
opportunity to embed textual hazard analysis information into the fault tree. This allows
a cross-check of the information provided in the fault tree with previously derived safety
requirements, the Software Failure Modes and Effects Analysis (SFMEA) and other
hazard analysis documents.

In the application engineering phase, however, PLFaultCAT provided significant ad-
vantages from a reuse perspective by exercising the pruning method outlined in Sections
5. For the two product-line members that we considered, PLFaultCAT automatically re-
moved most of the number of failure nodes that could be safely removed from the product-
line SFT without losing necessary information according to the PL-SFTA SEARCH
algorithm. This automatic pruning translates into reflects the effort saved in reuse of the
SFT.

A concern for performing safety analysis on safety-critical product lines is whether
the technique is scalable as the product line grows more complex by incorporating more
variabilities and product-line members. While the work reported here only considered



192 DEHLINGER AND LUTZ

a small product line, it appears that our method and tool will scale adequately as the
product line grows more complex. This is because most of the added complexity in a
large product line lies in the domain engineering phase when the product-line SFTA is
constructed. Since the construction of the product-line SFTA described in Section 4 relies
heavily on the aid of a product-line SFMEA, it appears that the scalability is at least as
robust as that of the SFMEA. Additionally, it should be clear that the reuse of the product-
line fault tree approach is far more efficient especially for large product lines than to
serially construct SFTAs for each of the desired product-line members of a product line.

The communicability of a product-line SFTA created in PLFaultCAT with other appli-
cations is high since PLFaultCAT provides a user with three different views of any given
fault tree: a standard graphical fault tree view, an XML file view and a text-based view.
This variety of product-line SFTA views should allow PLFaultCAT’s integration into
other safety analysis techniques and tools. The XML output file utilized in PLFaultCAT
supports straightforward linking with existing static analysis tools. For example, the use
of a product-line SFT created in PLFaultCAT with other applications (such as Relex or
DECIMAL) would only require a translation program to mediate the format of the XML
file.

PLFaultCAT should be viewed mainly as an application engineering asset. Thus,
within the domain engineering phase of a typical safety-critical product line, PLFaultCAT
only provides a means to graphically aid the analyst in representation of the product-line
fault tree. Where PLFaultCAT falls short is in the ability to enforce a product line’s
dependencies as detailed in a Commonality and Variability Analysis (CA) and in the
ability to provide any ordering mechanism for the way the variabilities are selected to
form any given product-line member. While these processes are vital to the entire product
line engineering process, PLFaultCAT cedes this functionality to other available tools
such as DECIMAL (Padmanabhan and Lutz, 2002).

7. Conclusion

This paper described an extension of the traditional Software Fault Tree Analysis (SFTA)
technique to an entire product line with the support of a software tool, PLFaultCAT. This
extension supports construction of a product-line SFTA in PLFaultCAT from common
hazard analysis assets during the domain engineering phase. The paper described how
new safety requirements can be discovered through the introduction of product-line
constraints. The paper also presented the pruning technique developed and implemented
in PLFaultCAT during the application engineering phase to derive the SFTA for single
product members of the product line. Planned future work will investigate the approach’s
reuse value and scalability through a large, industrial case study of a safety-critical
medical product line. It is hoped that the use of this technique and tool will help improve
the safety analysis of critical product lines.

Acknowledgments

This research was supported by the National Science Foundation under grants 0204139
and 0205588.



PLFAULTCAT: A PRODUCT-LINE SOFTWARE FAULT TREE ANALYSIS TOOL 193

Note

1. Software Failure Modes and Effects Analysis (SFMECA) is a similar safety analysis technique that addi-
tionally assigns a criticality rating to each failure mode.

References

Ardis, M.A. and Weiss, D.M. 1997. Defining families: The commonality analysis. In Proc. 19th Int’l Conf.
Software Engineering (ICSE ’97), Boston, MA, pp. 649–650.

Burgess, M. 2003. Fault tree creation and analysis tool: user manual. http://www.iu.hio.no/FaultCat (current,
May 2004).

Clements, P. 2002. Being proactive pays off. IEEE Software, 19(4):28, 30.
Clements, P. and Northrop, L. 2002. Software Product Lines: Boston: Addison-Wesley.
Coppit, D. and Sullivan, K.J. 2003. Sound methods and effective tools for engineering modeling and analysis.

In Proc. 25th Int’l Conf. Software Engineering (ICSE ’03), Portland, OR, pp. 198–207.
Dehlinger, J. and Lutz, R.R. 2004. Software fault tree analysis for product lines. In Proc. 8th IEEE Symposium

on High Assurance Systems Engineering (HASE ’04), Tamp, FL, pp. 12–21.
Doerr, J. 2002. Requirements engineering for product lines: guidelines for inspecting domain model relation-

ships. Diploma Thesis, University of Kaiserslautern.
Douglass, B.P. 1999. Doing hard time: Developing real-time systems with uml objects, Frameworks and

Patterns. Boston: Addison-Wesley.
Hansen, K.M., Ravn, A.P., and Stavridou, V. 1998. From safety analysis to software requirements. IEEE Trans.

on Software Engineering, 24(7):573–584.
Kang, K.C., Kim, S., Lee, J., and Lee, K. 1999. Feature-oriented engineering of pbx software for adaptability

and reusability. Software Practice and Experience, 29(10):167–177.
Leveson, N.G. 1995. Safeware: System Safety and Computers. Boston: Addison-Wesley.
Lu, D. and Lutz, R.R. 2002. Fault contribution trees for product families. In Proc. 13th Int’l Symp. Software

Reliability Engineering (ISSRE ’02), Annapolis, MD, pp. 231–242.
Lutz, R.R. 2000. Extending the product family approach to support safe reuse. Journal of Systems and Software,

53(3):207–217.
Lutz, R.R. 2000. Software engineering for safety: A roadmap. In Proc. of the Conference on the Future of

Software Engineering, New York, NY, pp. 213–226.
Lutz, R.R., Helmer, G.G., Moseman, M.M., Statezni, D.E., and Tockey, S.R. 1998. Safety analysis of require-

ments for a product family. In Proc. 3rd Int’l Conf. on Requirements Engineering (ICRE ’98), Colorado
Springs, CO, pp. 24–31.

Lutz, R.R. and Woodhouse, R.M. 1997. Requirements analysis using forward and backward search. Annals
of Software Engineering, 3:459–474.

Padmanabhan, P. and Lutz, R.R. 2002. DECIMAL: A requirements engineering tool for product families. In
Proc. 2002 Int’l Symp. Software Reliability Engineering for Product Lines (REPL ’02), Essen, Germany,
pp. 45–50.

Pai, G.J. and Dugan, J.B. 2002. Automatic synthesis of dynamic fault trees from uml system models. In Proc.
13th Int’l Symp. Software Reliability Engineering (ISSRE ’02), Annapolis, MD, pp. 243–254.

Schmid, K. and Verlage, M. 2002. The economic impact of product line adoption and evolution. IEEE Software,
19(4):50–57.

Sommerville, I. 2004. Software Engineering. Boston: Pearson Addison-Wesley.
Weiss, D.M. and Lai, C.T.R. 1999. Software Product Line Engineering: A Family-Based Software Development

Process. Boston: Addison-Wesley.


