
Safety Analysis of Requirements for a Product Family

Robyn R� Lutz �

Iowa State University and Jet Propulsion Laboratory
rlutz�cs�iastate�edu

Guy G� Helmer � Michelle M� Moseman

Iowa State University
ghelmer� mmoseman�cs�iastate�edu

David E� Statezni � Stephen R� Tockey
Rockwell Avionics and Communication
srtockey� destatez�collins�rockwell�com

Abstract

A safety analysis was performed on the software re�

quirements for a family of �ight instrumentation dis�

plays of commercial aircraft� First� an existing Safety

Checklist was extended to apply to four�variable models

and used to analyze the requirements models for repre�

sentative members of the product family� The results

were evaluated against an initial speci�cation of the

product family�s required commonalities and variabili�

ties� The Safety Checklist was found to be e�ective at

analyzing the completeness of the product family re�

quirements and at identifying additional variabilities

and commonalities� Secondly� a forward and back�

ward search for hazards was performed on representa�

tive members of the product family� Additional safety

requirements for enhanced fault tolerance were derived

from these searches� The safety analysis techniques

used here appear to have applicability for enhancing

the completeness and robustness of a product family�s

safety�related software requirements�

� Introduction

With increased reuse of software components comes
a growing awareness of the di�culty of specifying the
requirements for a family of software products in such
a way that the possible variations among the fam�
ily members are adequately represented ����� From a
safety perspective� ensuring completeness in the soft�
ware requirements is an essential part of the reuse pro�
cess� The safety analysis helps verify that all implicit
required commonalities and all permitted variations
among the family members are accurately and com�

� c����� IEEE� Proceedings of ICRE���� Apr �	�
� ����� Col	

orado Springs� CO� This research was supported in part by

Rockwell Collins� Inc� Research Grant ���	���

pletely speci	ed�
In the work described here� a safety analysis was

performed on the software requirements for a family of

ight instrumentation displays of commercial aircraft�
An overview of the safety analysis process is shown in
Fig� ��

Requirements
Model

Product Family
Requirements
Commonalities
Variations

Member 1
Requirements

Model

Member 3
Requirements

Model

Safety Checklist
(Completeness)

Member 2

Forward &
Backward
Search
(Hazards)

Safety Analysis

Enhanced
Requirements

Derived Safety
Requirements

Figure �� Overview of Safety Analysis Process

First� a set of completeness criteria for analyzing
requirements� derived from �� ��� ���� was tailored for
a four�variable model ���� and models were created
of parts of three representive members of the product
family� The relevant completeness criteria� format�
ted as a Safety Checklist �a set of questions to guide
analysis�� were then used to analyze the requirements
models for these three representative members of the
product family� The results of this safety analysis were
evaluated against the initial speci	cation of the prod�
uct family�s required commonalities and variabilities



provided by the project for whom the safety analysis
was performed� The Safety Checklist was found to be
e�ective at analyzing the completeness of the prod�
uct family requirements and at identifying additional
variabilities and commonalities�

Secondly� a forward and backward search for haz�
ards was performed on representative members of the
product family� These searches suggested additional
safety requirements for robustness that can be explic�
itly included in the product family�s software require�
ments speci	cation�

The major contribution of this work is to de�
scribe a way in which existing and well�documented
safety analysis techniques �safety checklist� forward
and backward search� can be combined to evaluate
the completeness of a product family�s requirements
speci	cation and to identify additional derived safety
requirements to enhance the product family�s robust�
ness�

��� Background
The safety analysis work described here supported

a project working to develop reusable software and
hardware components� For the software portion of
this project� the Software Productivity Consortium�s
�SPC� description of the process of producing reusable
software ���� was used as a baseline� Our work formed
part of their �Domain Veri	cation Activity�� which
SPC de	nes as� �Verify the correctness� consistency�
and completeness of DE �Domain Engineering� work
products� �Fig� ���

DE.2. Domain Analysis Activity

DE. Domain Engineering

DE.2.3 Domain Verification Activity: "Verify the
correctness, consistency, and completeness of DE work
products" (Domain Definition, Domain Specification, and
Domain Implementation)

Figure �� Excerpt from Reuse�Driven Software Pro�
cess ����

The product family that we worked with was a

ight instrumentation display� Up to twenty�four
items belonging to the software components analyzed
in this study can be displayed to the pilot on a cockpit
digital instrumentation display as graphical or textual
icons� Examples of the features displayed include air�
craft orientation� autopilot status� and failure indica�
tors�

The SPC reuse�driven software process distin�
guishes a �Commonality�� i�e�� an assumption about

a characteristic that is common to all the members
of a product family� from a �Variability�� i�e�� an as�
sumption that distinguishes among the members of a
product family� An example of a commonality in this
domain is the requirement that a graphical icon be dis�
played in every 
ight instrumentation display showing
the status of the autopilot� An example of a variabil�
ity is that the requirements di�er among the 
ight
instrumentation displays as to what shape that icon
takes� In addition� as part of the domain speci	cation
activities� the project produced a decision model� In
the SPC reuse�driven process� a decision model is the
set of requirements and engineering decisions needed
to produce a member of the product family�

The decision model� as well as the domain assump�
tions� the domain glossary� and the requirements spec�
i	cations as they became available� served as input to
the safety analysis process� The requirements spec�
i	cation documents of three legacy members of the
product family that was being developed also were an
input to the safety analysis� At the beginning of our
work� the project anticipated specifying the product
family requirements in either CoRE ��� or in SCR�
���� which drove our interest in tailoring our safety
analysis techniques to the four�variable model� upon
which both CoRE and SCR� are based �see also ������
The requirements for the initial prototype were later
developed using SCR�� allowing a clean 	t with the
four�variable version of the Safety Checklist�

From a safety perspective� our primary concern was
the completeness of the commonalities and variabili�
ties that the reuse process identi	ed and the require�
ments for robustness� Thus� the detailed requirements
speci	cation of three existing representatives of the
product family were the focus of our initial work� By
modeling and analyzing the individual members we
were able to determine whether variabilities existed
that were masked in the individual requirements spec�
i	cations but needed to be called out in the product
family�s requirements� We also checked for unstated
commonalities that needed to be made explicit in the
product family description�

It is worth noting that no design or implementa�
tion errors were found in existing aircraft by our safety
analysis� The issues found involved the experimental
prototypes of a future system currently in the require�
ments stage of development� Our focus was on vali�
dating the emerging product family requirements from
a safety perspective�

Following Leveson ����� software safety is de	ned to
be freedom from undesired and unplanned events that
result in a speci	ed level of loss� Software safety analy�

�



sis techniques focus on how software can contribute to
conditions that result in loss or failure� In the avionics
domain� 
ight software must often be demonstrably
safe� For example� the entire set of display outputs
produced by the software analyzed here would need
to be certi	ed to DO���B Level A �the highest level
of criticality� since the software�s anomalous behav�
ior could cause or contribute to a catastrophic failure
condition for the aircraft �����

��� Related Work

The safety analysis techniques used here are well
de	ned in the literature� The completeness criteria�
originally developed by Ja�e� Leveson� Heimdahl� and
Melhart as a set of predicates that must hold on a
	nite�state model of the requirements ��� were trans�
lated by Lutz into an English�language checklist and
used to target root causes of safety�related software
errors found during spacecraft integration and system
testing� In one study this Safety Checklist was found
to address the causes of software safety errors discov�
ered during integration and system testing in ��� of
the cases ����� The checklist was further extended to
handle human�computer interactions in Leveson �����

Forward and backward searches for hazards and
their contributing causes are widely used to evalu�
ate the safety aspects of both hardware and soft�
ware ��� �� ��� ��� ��� Previous work indicates that
Software Failure Modes and E�ects Analysis �for�
ward search for hazards� ���� ��� ���� in conjunction
with Software Fault Tree Analysis �backward search
for feasible combinations of enabling circumstances��
��� �� ��� is e�ective at identifying unsafe situations
that can sometimes be alleviated by derived software
safety requirements ����� One goal of our work was
to enable the transfer of these safety analysis tech�
niques to the reuse project as it scaled up the dimen�
sions of the product family it was supporting� The
safety analysis techniques chosen�Safety Checklist�
SFMEA� and SFTA� support this goal in that check�
lists� FMEAs� and FTAs are techniques familiar to
both software and hardware engineers� are widely used
and well documented� and can be taught�

� Safety Analyis Techniques

��� Safety Checklist

The checklists in �� ��� ��� were combined into a
single checklist that partitioned the criteria into those
appropriate for the components of the four�variable
model ���� The four�variable model documents a sys�
tem by describing its function in terms of the opera�
tions on the input variables� monitored variables� con�
trolled variables� and output variables ����� Twelve

of the forty�six items were allocated to IN� the rela�
tionship between monitored and input variables �e�g��
�Input received before startup must be acknowledged
or ignored��� 	ve checklist items to OUT� the relation�
ship between output and control variables �e�g�� �Ob�
solete data should not be used to generate outputs���
and thirty�four checklist items to REQ� the relation�
ship between monitored and controlled variables �e�g��
�Every monitored variable must be used��� The fourth
relation� NAT� which de	nes the environmental con�
text of the system� is not directly addressed by the
checklist�

The Safety Checklist was applied to two key compo�
nents of the display software� the 
ight director icons
and the 
ight control icons� The process that was fol�
lowed was�

� Step �� Informal modeling of the software� Both
object�oriented models �akin to UML�s class di�
agrams or OMT�s object diagrams in that they
identi	ed the object classes� their attributes� and
their operations� and state diagrams were cre�
ated� both to con	rm our understanding of the
domain and to facilitate the application of the
checklist �which assumes a requirements model
exists�� Since the safety analysis began simulta�
neously with the project�s process of de	ning the
product family requirements� the product family
speci	cations did not yet exist� Thus� the model�
ing was complicated by the need to capture in a
single requirements model the variety among the
three family members for which we had the spec�
i	cations� In general this was accomplished by
choosing the best documented family member as
the paradigm�modeling it� and describing all vari�
ations in textual footnotes� We found that meth�
ods to diagramatically capture the variations are
an area in which improvement is needed�

� Step �� Application of the Safety Checklist� A
sample of twenty�eight criteria from the forty�
six items in the Safety Checklist was applied to
the requirements model for one feature compo�
nent �which can contain one or two composite
icons�� and 	ve key criteria were applied to the
requirements for another� more complicated com�
ponent �which can contain up to 	fteen icons� �
The 	rst feature�s requirements model contained
eight states� the second feature�s model contained
seventy�four� Criteria from the checklist were se�
lected on the basis of relevancy to this application
at this stage of development �the requirements
models contained primarily REQ items�� Fig� �

�



contains examples of the checklist criteria used to
verify the components�

�� Each monitored variable must be used�

�� Every mapping from controlled to monitored
variables must have a behavior de�ned for
every possible value of monitored variables�

�� Every state must handle timeouts �when in�
put has not arrived within a speci�ed inter�
val or by a speci�ed time��

	� Transitions out of a mode must be deter�
ministic based on the values of monitored
variables�


� Acceptable ranges of values must be speci�
�ed for each monitored variable used to de�
�ne the value or duration for some controlled
variable�

�� When a monitored variable indicates the in�
put arrival rate exceeds input capacity� ab�
normal action �such as graceful degradation�
may be required�

� A hysteresis delay action must be speci�ed
for human�computer interface data to allow
time for meaningful human interpretation�
Requirements may also be needed that state
what to do if data should have been changed
during the hysteresis period�

�� If hazardous state cannot reach a safe state�
all paths from the hazardous state must lead
to minimum risk states�

Figure �� Examples of the Safety Checklist Items

� Step �� Issues found were documented and passed
to the project for review� Their status is reported
below�

Thirty�four issues were found by means of the re�
quirements modeling and the application of the Safety
Checklist items� �This count excludes typographi�
cal errors and small� internal inconsistencies that did
not a�ect the product family requirements�� Of these
thirty�four items�

� Eleven items were resolved by updated require�
ments or domain speci	cations� Updates to the
domain products �e�g�� by adding a variability to
the requirements� resolved several of these issues�

an updated requirements document for a member
of the product family resolved the others�

� Nine items were open issues �i�e�� what precisely
a particular software requirement for the product
family should be�� An example is that there is
an unstated requirement for redisplay of an icon
when an error 
ag becomes false� These open
issues were referred to the development team for
a decision or proposed as changes for subsequent
updates to the product family documents�

� Eight items were resolved by reference either to
the requirements for other software that inter�
faced with these components or to design details�

� Six items were due to analyst misunderstanding
or error�

��� Forward and Backward Search

Forward and backward searches were performed on
two components �
ight director and 
ight control� in
three representative members of the product family
�i�e�� three di�erent aircraft� to try to identify un�
foreseen hazards and their contributing causes� The
forward and backward search also allowed further ex�
ploration of some of the open issues resulting from the
safety checklist analysis� Fig� � shows the process that
we used�

The forward search was performed 	rst� using
the Software Failure Modes and E�ects technique
�SFMEA� to explore in a structured way the e�ects of
unexpected data or behavior that the software for each
feature might experience� In a message�passing model
of a distributed system� two kinds of failures are gener�
ally represented� communication failures and process
failures ���� In accordance with this model� two kinds
of failures are analyzed in a SFMEA for each soft�
ware component� communication failures �needed to
analyze data dependencies and interface errors� and
process failures �needed to analyze the e�ects of soft�
ware failing to function correctly�� To assist in the
analysis of any possible failures of the software� two
types of tables� Data Tables and Event Tables� are
constructed� �A more detailed description of forward
and backward searches appears in ������

The SFMEA was organized so as to facilitate con�
sideration of the product family requirements� The
e�ect of each category of anomalous data or behavior
�e�g�� �Timing of Data Wrong�� �Abnormal Termina�
tion of Process�� was considered separately for each of
the three representative members of the product fam�
ily� The e�ects were documented jointly for all mem�
bers of the family but were keyed �via superscripts� to

�



SFTA (S/W Fault Tree Analysis)

Safety Requirements to Control
Hazards

SFMEA (Software Failure
Modes and Effects Analysis)

Partial List of Hazards

Domain Assumptions

SFMEA/SFTA for Safety Analysis

Member Requirements:
Aircraft 1
Aircraft 2
Aircraft 3

Figure �� Overview of Forward and Backward Search

the individual variations� Fig� � shows an example ex�
cerpted from an SFMEA Data Table� and Fig� � shows
an example excerpted from an SFMEA Event Table�
The superscripts X and Y relate the failure e�ect to
the speci	c familymembers �aircraft types�� �In retro�
spect� we decided that it would be clearer to divide the
row in the SFMEA documenting the e�ects of a single
fault into sub�rows� with each sub�row describing the
e�ect of a separate variation��

This format means that commonalities and varia�
tions among the failure e�ects for the members can
be readily extracted from the SFMEA documenta�
tion and reviewed� In general� we found that since
there were few di�erences among the members with
respect to their input data and their key functional�
ity� that there were few signi	cant di�erences among
the SFMEAs for the representative members�

Nine possible hazardous situations �failure modes�
were identi	ed by the SFMEAs� Three of these were
of particular concern from a safety perspective� These
were� �Autopilot engaged when display shows not en�

Data

Label

Data

Item

Data Fault

Type Description E�ect

��� MODE
WD �

Absent Data
or Timing of
Data Wrong

No Data
�Flight
Control
Failure� or
Obsolete
Data �Flight
Control
Failure
should be
declared�

ACTIVE ALTITUDE
TYPE X�Y � ALTITUDE
ARM�ALTITUDE
ABORT� VERTICAL ARM
MODE �Altitude Arm�
Vertical Approach��
ACTIVE ALTITUDE
TYPE� MANY OTHER
ELEMENTS� VERTICAL
CAPTURE
MODE�Vertical
Degradation removed 	 sec
after Flight Control Failure

��� MODE
WD �

Incorrect
Data

Wrong Data
�or Flight
Control
Failure
incorrectly
declared�

ACTIVE ALTITUDE
TYPE X�Y � ALTITUDE
ARM�ALTITUDE
ABORT� VERTICAL ARM
MODE �Altitude Arm�
Vertical Approach��
ACTIVE ALTITUDE
TYPE� MANY OTHER
ELEMENTS� VERTICAL
CAPTURE
MODE�Vertical
Degradation may be
missing or inadvertently
displayed

Figure �� Excerpt from SFMEA Data Tables

Event

Event Fault

Type Description E�ect

AP Engaged �
Clear

Halt�Abnormal
Termination

Processing Stops �AP Engaged� remains

AP Engaged �
Clear

Omission Jump in Processing �AP Engaged� remains

AP Engaged �
Clear

Incorrect
Logic�Event

AUTOPILOT
ENGAGE VALID �
FALSE or
DISCRETE WD
SSM �� NORM or
AUTOPILOT
ENGAGE � FALSE
computed
incorrectly or branch
incorrect

�AP Engaged� may remain
or other annunciations may
be erroneously displayed

AP Engaged �
Clear

Timing�Order Obsolete Data FLIGHT CONTROL
FAILURE should be
TRUE� so will clear anyway

Figure �� Excerpt from SFMEA Event Tables

gaged�� �Fault 
ag displayed erroneously�� and �Cue
�aircraft icon� displayed when should be removed��

These three failure modes then served as initial root
nodes for the backward search� The backward search
used the Software Fault Tree Analysis �SFTA� tech�
nique ���� to work backward in time considering the
possible combinations of events that could have led
to the failure indicated by the root node� For exam�
ple� Fig� � shows the 	rst two levels of the analysis
for the hazard� �Cue displayed when should be re�
moved�� The possible causes for the second levels were
then broken out in the third level� and so on� until the
combinations of root causes for this hazard were ad�
equately understood� The SFTA identi	ed enabling
circumstances for each of the hazards and allowed an
evaluation of the credibility of the postulated hazard�

A simple format� called �WHAT IF� HANDLED
BY� pairs� was developed to facilitate review of the

�



Pitch Failure
not detected

Flight Control
Failure exists, but

is not detected

Unusual Attitude
exists, but is not

detected

Roll Failure
not detected

Cue displayed when
should be removed

or

Figure �� Excerpt from Software Fault Tree Analysis

safety results by the domain experts on the project�
The safety analyst listed the possible hazards by de�
scribing a hazardous situation as the 	rst element of
the pair �the �WHAT IF���� The safety analyst then
described the response �often involving hardware or
software beyond the scope of the study� as the second
element of the pair �the �HANDLED BY��� For ex�
ample� ��WHAT IF� arrival rate of input data exceeds
software capacity�� HANDLED BY� excess data is ig�
nored��� The domain expert was then able to quickly
sort through the list� either con	rming the accuracy of
the postulated response or correcting it� In those cases
where the current requirements for the response to the
hazardous circumstances might be strengthened� the
�HANDLED BY� element provided a possible derived
requirement for subsequent inclusion in the product
family requirements speci	cation�

The identi	cation of circumstances that con�
tributed to the possibility of a hazardous situation al�
lowed us to derive some software safety requirements
that were recommended to the project as additions to
the product family requirements� These included re�
quirements for persistence checks �to ignore transient
failures�� reasonableness checks on the output �to dis�
allow inconsistent displays�� additional checks of valid�
ity bits� and references to a single�point failure policy
�that no single failure shall jeopardize the system� in
the requirements�

� Lessons Learned
The Safety Checklist was e�ective at identifying

additional variations �instances in which the product
family requirements were incomplete� and at identi�
fying additional commonalities �hidden assumptions
that were required to be true�� It is of interest that
most of the identi	ed gaps in requirements complete�
ness were readily resolved by updating the domain
assumptions for the product family� but might have
been di�cult to 	x once a design had been chosen�
This con	rms the common understanding that 	xing
requirements errors at the requirements stage is often
easy� but that 	xing requirements errors once they are

erroneously implemented is di�cult� The explicit and
accurate documentation of variabilities in the domain
assumptions appears to be key to building safe mem�
bers of a product family�

The criteria in the Safety Checklist can often be
declared satis	ed only by knowledge of design details
that do not exist at the requirements stage �e�g�� �Are
there any paths to hazardous states���� Thus� ap�
plying the Safety Checklist is not a one�shot analysis
technique but instead serves as a set of liens on the
developing software� Some of these concerns can be
discharged at the requirements stage� but others re�
main in e�ect until further design decisions or details
are known�

The need to iterate the Safety Checklist as the re�
quirements mature and the design evolves appears to
be especially true with regard to product family soft�
ware requirements� For several criteria in the check�
list� whether or not the criterion was satis	ed de�
pended on which variability was selected by the cus�
tomer� For example� if the hardware detects no activ�
ity in a bu�er that provides an interface to the soft�
ware under consideration� then whether or not an error
indication is displayed is a customer�driven variabil�
ity� Such checklist criteria can serve as useful input to
the development process since they allow prediction
of possible safety concerns even before decisions are
made� �Thanks to S� Easterbrook for this insight��

The commonalities in the product family members
could usually be veri	ed by the checklist at the re�
quirements level� However� for some variations� eval�
uating the criteria in the checklist had to be deferred
until design decisions were made and design details
were known� In these cases� the documentation of
the reason why this particular criteria in the check�
list could not be declared satis	ed at the requirements
stage serves as a derived� domain�dependent checklist�
tailored to the particular application� The checklist
thus serves a useful role in providing continuity in the
safety analysis and in preserving knowledge about the
safety�related issues� even for variable requirements�

Some criteria in the checklist were inherently satis�
	ed by the representation of the requirements in the
four�variable model� Of the forty�six criteria� 	fteen
were satis	ed by the CoRE and SCR methodologies�
CoRE SCR satis	ed eight of the twelve IN criteria
and two of the 	ve OUT criteria� but only 	ve of the
thirty�four REQ criteria� The safety analysis thus fo�
cused on verifying the REQ criteria�

The four�variable model was a good match with the
Safety Checklist in that the items in the checklist were
mapped to elements in the model� An added advan�

�



tage was that when items in the checklist were ap�
plicable to more than one element of the model �e�g��
some apply to both IN and REQ�� the separate appli�
cation of the checklist items to the separate elements
provided a clean decomposition in the safety analysis�

All the safety analysis techniques chosen required a
substantial amount of domain knowledge� This is typ�
ical of safety analyses since errors tend to occur at the
interfaces between components� or between software
and hardware� The three individuals who performed
the safety analyses were not familiar with digital in�
strumentation displays when they began this work�
but had the advantage of extensive documentation
of mature systems and the ready support of domain
experts� The process that quickly evolved and that
worked well was for the safety analysts to apply the
safety techniques in a structured manner and rapidly
pass the initial list of postulated issues to the domain
experts for an informal review� The project provided
strong technical support to the safety analysis� includ�
ing timely access to project updates� ongoing email
discussions� regular telecons� and rapid feedback on
technical questions�

The forward search was useful in identifying some
hazards that might be prevented or handled by ad�
ditional software requirements for the product family�
By considering the e�ect of faulty data and anoma�
lous software behavior� the SFMEA allowed an initial
list of possible hazards to be assembled for further
analysis� The SFMEAs provided an organized way
to consider the e�ect of the variations in the product
family for each postulated fault in the safety analysis�
By adding additional rows to the SFMEA tables� the
di�erent members of the family could be considered
together �same fault� possibly variable e�ects��

We are wary of generalizing from our experience
since combinations of subtle variations in the require�
ments may� in other applications� be able to produce
signi	cant variations in the e�ects documented by the
SFMEA� It does� however� seem likely that once a
baseline SFMEA has been performed on a product
family�s requirements� that subsequent SFMEAs for
new instances of that family can be produced fairly
rapidly� The SFMEAs for new members can reuse
much of the baseline SFMEA and concentrate on the
e�ects of the speci	c combination of variations rele�
vant to that particular product member� This reuse
could reduce the size� the e�ort� and the tedium of
subsequent SFMEAs by focusing resources on what
is unique about a particular instance of the product
family� Further work to pursue this line of inquiry is
merited�

The backward search was less e�ective in this do�
main� This was primarily due to the fact that the
backward search from a display to the source of its
data quickly broadens the scope of the system that
must be considered� Since our safety analysis was re�
stricted to the display subsystem� we were unable to
e�ectively evaluate the software that fed data to the
display subsystem or the hardware that provided these
interfaces� Despite these limitations of scope� the
backward search did provide insight into additional
software requirements that we could recommend to en�
hance safety� An example is a requirement for added
checks that the display elements output are consistent
with each other�

� Conclusion
In developing the software requirements for a prod�

uct family� safety concerns focus primarily on the com�
pleteness and consistency of the requirements and on
the requirements for robustness� The safety analy�
sis techniques described here were useful in detecting
some incomplete software requirements for the 
ight
instrumentation display family� Application of the
portion of the safety checklist that contains criteria for
REQ �the expected behavior of the system� identi	ed
some implicit assumptions that needed to be captured
as additional commonalities as well as some previously
undocumented variabilities in the requirements�

In order to enhance the robustness of the prod�
uct family software� a forward search for hazards
�SFMEA� and a backward search for enabling circum�
stances �SFTA� were performed� Derived safety re�
quirements to provide enhanced handling of transient
failures� of inconsistent displays� and of invalid data
were recommended for inclusion in the product family
requirements� In addition� the forward and backward
search provided a preliminary hazards list as a base�
line for future safety analysis�

The safety analysis reported here assisted in the
development of complete and robust software require�
ments for a product family from legacy family mem�
bers� Further work is needed to better understand
how safety analysis techniques such as the ones applied
here �evaluation of requirements against key complete�
ness criteria� forward search� and backward search�
can� once performed on the requirements for a product
family� be exploited for rapid reuse on future instances
of the product family�

Acknowledgments
The authors thank Roger W� Shultz� Steven P�

Miller� Karl F� Hoech� GaryW� Daugherty� and James
N� Potts for valuable discussions and suggestions� and

�



Stuart R� Faulk for answering some questions about
the four�variable model�

References
��� Cha� S� S�� N� G� Leveson� and T� J� Shimeall �������

	Safety Veri
cation of Ada Programs Using Fault
Tree Analysis�� In IEEE Software� �� � �����

��� de Lemos� R�� A� Saeed� and T� Anderson �������
	Analyzing Safety Requirements for Process�Control
Systems�� IEEE Software ��� �� �����

��� Faulk� S�� J� Brackett� P� Ward� and J� Kirby�
Jr� ������� 	The CoRE Method for Real�Time Re�
quirements�� In IEEE Software� September ����� ���
���

�� Fencott� C� and B� Hebbron ������� 	The Applica�
tion of HAZOP Studies to Integrated Requirements
Models for Control Systems�� ISA Transactions ��
��������

��� Heimdahl� M� P� E� and N� G� Leveson ������� 	Com�
pleteness and Consistency in Hierarchical State�
Based Requirements�� IEEE Transactions on Soft�

ware Engineering ��� �� ��������

��� Heitmeyer� C�� A� Bull� C� Gasarch� and B� Labaw
������� 	SCR� A Toolset for Specifying and An�
alyzing Requirements�� In Proceedings of the ��th

Annual Conference on Computer Assurance� IEEE�
Gaithersburg� MD� pp� ��������

��� Helmer� Guy G� ������� 	Safety Checklist for Four�
Variable Requirements Methods�� TR������ Iowa
State University Department of Computer Science�

��� Ja�e� M� S�� N� G� Leveson� M� P�E� Heimdahl� and
B� E� Melhart ������� 	Software Requirements Anal�
ysis for Real�Time Process�Control Systems�� IEEE

Transactions on Software Engineering� ��� �� ���
����

��� Lamport� L� and N� Lynch ������� 	Distributed
Computing Models and Methods�� In Handbook of

Theoretical Computer Science� vol� B� Formal Mod�

els and Semantics� J� van Leeuwen� Ed� Cam�
bridge�Amsterdam� MIT Press�Elsevier� pp� �����
�����

���� Leveson� N� G� ������� Safeware� System Safety and

Computers� Addison�Wesley� Reading� MA�

���� Lutz� R� R� ������� 	Targeting Safety�Related Errors
During Software Requirements Analysis�� In Journal
of Systems and Software� �� ��������

���� Lutz� R� and R� Woodhouse ������� 	Requirements
Analysis Using Forward and Backward Search�� An�
nals of Software Engineering� Special Volume on Re�

quirements Engineering� �� pp� ������

���� Maier� T� ������� 	FMEA and FTA To Support Safe
Design of Embedded Software in Safety�Critical Sys�
tems�� In CSR ��th Annual Workshop on Safety and

Reliability of Software Based Systems� Bruges� Bel�
gium�

��� McDermid� J� A� and D� J� Pumfrey ������ 	A De�
velopment of Hazard Analysis To Aid Software De�
sign�� In Proceedings of the 	th Annual Conference

on Computer Assurance� IEEE� Gaithersburg� MD�
pp� ������

���� Military Standard� Procedures for Performing a Fail�
ure Mode� E
ects and Criticality Analysis �������
MIL�STD�����A�

���� Miller� S� P� ������� 	Specifying the Mode Logic of
a Flight Guidance System in CoRE and SCR�� �nd

Workshop on Formal Methods in Software Practice�
Clearwater Beach� FL� forthcoming�

���� Parnas� D� L� and J� Madey ������� 	Functional Doc�
uments for Computer Systems�� In Journal of Sys�

tems and Software� ��� �� �����

���� Reese� J� D�� 	Software Deviation Analysis�� Ph�D�
thesis� University of California� Irvine� California�
�����

���� Reifer� D� J� ������� 	Software Failure Modes and
E�ects Analysis��IEEE Transactions on Reliability�
R���� �� ������

���� RTCA�DO����B ������� Software Considerations

in Airborne Systems and Equipment Certi�cation�
RTCA� Inc�� ��� Connecticut Avenue� NW� Suite
����� Washington� DC� ����������

���� Software Productivity Consortium �Nov�� ������
Reuse�Driven Software Processes Guidebook� SPC�
������CMC� v� ���������

���� Weiss� D� M� ������� 	De
ning Families� The Com�
monality Analysis�� submitted for publication�

���� Wunram� J� ������� 	A Strategy for Identi
cation
and Development of Safety Critical Software Embed�
ded in Complex Space Systems�� IAA ������� ������




