
2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

In addition, difficulties with requirements
are a well-known source of both testing and
post-release defects.1,2 Missing or erroneous
requirements are also a frequent cause of acci-
dents in deployed systems.3 We can improve
our systems’ quality by means of a better un-
derstanding of the mechanisms by which we
discover requirements and manage them in
testing and operations.

We analyzed anomaly reports from testing

and operations for eight spacecraft projects at
the California Institute of Technology’s Jet
Propulsion Laboratory, showing that many of
the anomalies during these phases involve
software requirements discovery. As a result,
several patterns of requirements discovery
emerged. In turn, identifying these patterns
leads to six guidelines for managing the ongo-
ing requirements discovery.

Analyzing anomalies
An institutional, Web-based database con-

tains the anomaly reports for the eight JPL
spacecraft projects. Separate online forms ex-
ist for describing testing anomalies and opera-
tional anomalies, but they’re similar. Both
forms contain an anomaly’s description, a sub-
sequent analysis of the anomaly, and a de-

focus
Ongoing Requirements
Discovery in High-Integrity
Systems

T
oo often, we act as if we can confine requirements discovery to
the requirements phase of development. For example, using the
common phrase “requirements elicitation” often implies that we
can, with a good process, know all software requirements at an

early development phase. However, for many complicated, highly interactive,
or embedded systems, especially in critical domains such as spacecraft, we
continue to discover requirements knowledge into deployment and beyond.

requirements engineering

Discovering new requirements and requirements knowledge
continues throughout the lifetime of many high-integrity embedded
systems. Understanding the mechanisms for how we discover and
resolve requirements identifies guidelines to help prevent anomalies
found during testing from recurring during operations.

Robyn R. Lutz, Jet Propulsion Laboratory, California Institute of Technology, and
Iowa State University

Inés Carmen Mikulski, Jet Propulsion Laboratory, California Institute of Technology

scription of the corrective action taken to
close out the anomaly report.

The data set of testing anomalies used for
the twin Mars Exploration Rover spacecraft
contained 463 filled-in forms written during
integration and system testing. These twin
spacecraft launched in June 2003 and reached
Mars in January 2004. Their two robotic
rovers (see Figure 1) are currently exploring
Mars to search for, among other things, evi-
dence of past water.

The data set of operational anomalies con-
sisted of nearly 200 anomaly reports ranked
critical on seven already-launched spacecraft.
Table 1 lists the spacecraft, their missions, and
their launch dates. Although we analyzed all
available testing anomaly reports, we analyzed
only the critical anomaly reports from the de-
ployed systems. This is because at the time of
analysis the criticality rankings weren’t avail-
able for all the testing anomalies. The same
types of requirements discovery evident in
testing caused critical anomalies in operations,
which motivates continuing work in this area.

We analyzed the anomalies using an adap-
tation of the Orthogonal Defect Classifica-
tion, a defect-analysis technique that Ram
Chillarege and his colleagues at IBM devel-
oped.4 ODC provides a way to extract signa-
tures from defects and correlate the defects to
attributes of the development process. Our
adaptation of ODC to the spacecraft domain
used four attributes to characterize each
anomaly reported. The first attribute is the ac-
tivity, which describes when the anomaly oc-
curred. The trigger indicates the environment
or condition that had to exist for the anomaly
to surface. For example, the trigger could be a
hardware-software interaction. The target
characterizes the high-level entity that was
fixed in response to the anomaly’s occurrence
(for example, “flight software”). Finally, the
type describes the actual fix that was made
(for example, “function/algorithm”).

Anomaly reports document defects as well
as any behavior that the testing or operational
personnel don’t expect. The anomaly reports
are thus a rich source of latent requirements
(where the software doesn’t behave correctly
in some situation due to incomplete require-
ments) and requirements confusion (where the
software behaves correctly but unexpectedly).

The anomaly reports showed two basic
kinds of requirements discovery:

■ New, previously unrecognized require-
ments or requirements knowledge (such as
constraints)

■ Misunderstandings by the testers or users
regarding existing requirements

Table 2 describes how the ODC target and
type identified the various ways to handle the
requirements discovery:

■ Software change. Implement a new re-
quirement in software.

■ Procedural change. Enforce a new require-
ment with a new operational rule.

■ Document change. Solve a requirements
misunderstanding by improving the docu-
mentation.

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 3

Figure 1. A Mars
Exploration Rover.
(photo courtesy of the
Jet Propulsion
Laboratory and the
California Institute of
Technology)

Table 1
Flight software systems

Project Launch Mission

Galileo 1989 Jupiter
Mars Global Surveyor 1996 Mars
Cassini/Huygens 1997 Saturn/Titan
Mars Climate Orbiter 1998 Mars
Deep Space 1 1998 Flight-test new technologies
Mars Polar Lander 1999 Mars
Stardust 1999 Comet Wild 2

■ No change. Make no change because the
software worked correctly and the behav-
ior just confused the user.

Figure 2 provides an overview of these four
mechanisms in the anomaly reports. The x
axis shows the four mechanisms in the order
we described earlier. The y axis displays the
number of anomaly reports characterized by
each mechanism. The z axis distinguishes the
operational phase (blue) from the testing
phase (red) and provides a total for each
mechanism (yellow). For example, Figure 2
shows that in both testing and operations im-
plementing new software requirements is the
most frequent of the four mechanisms.

Discovering new requirements
We found two mechanisms for handling re-

quirements discovery of a previously unidenti-
fied requirement or of previously unknown in-
teractions among requirements. The projects
resolve such anomalies either by changing the

software or by changing the procedures to im-
plement the new requirement.

Discovery resolved by changing software
In this mechanism, the first that we found,

the anomaly report describes the discovery of
new requirements knowledge. The projects
corrected the anomaly by implementing the
new requirement in the onboard flight soft-
ware. For example, in one case, analyzing a
testing anomaly revealed a previously uniden-
tified requirement to reenable a reset driver
during a reboot.

Projects implemented newly discovered re-
quirements during operations by uploading a
patch, or new software, to the spacecraft. In
this article, we don’t consider requirements in-
volved in the planned evolution or scheduled
system maintenance.. This is because software
is regularly uploaded to the spacecraft before
a new mission phase to control that phase’s ac-
tivities. For example, as the mission passes
from cruise to planetary encounter, new soft-
ware requirements are implemented in the
flight software. However, these planned up-
dates don’t routinely reflect the discovery of
new requirements. This contrasts with the un-
planned changes to requirements prompted by
critical anomalies during operations that we
studied here.

In testing, 218 anomaly reports had the
ODC target “flight software.” As Figure 2
shows, 46 of these involved incomplete or
missing requirements resolved by software
changes. These missing requirements were ei-
ther unidentified or new requirements. Many
describe timing or initialization issues arising
from the interaction among software compo-
nents or between software and hardware. For
example, in one such anomaly, a new require-
ment became evident during testing. The new
requirement was for the initial state for a com-
ponent to wait for a motor’s initial move to
complete. In another case, testing identified an

4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 2
Orthogonal Defect Classification signatures investigated

Category ODC target ODC type

Incomplete requirements and software fix Flight software Function/algorithm (primarily)
Unexpected requirement interactions and procedural fix Information development Missing procedures or procedures not followed
Requirements confusion and documentation fix Information development Documentation or procedure
Requirements confusion and no fix None/unknown Nothing fixed

New—
software fix New—

procedure Confusion—
document Confusion—

none

Operations

Testing

Total

0

10

20

30

40

50

60

Nu
m

be
r o

f a
no

m
al

ie
s

Figure 2. Requirements
discovery classification.

off-nominal scenario in which certain inter-
faces had to be temporarily disabled to
achieve correct behavior.

In operations, 44 anomaly reports had the
“flight software” target. Figure 2 shows that
11 of these involved missing or incomplete
requirements. In four cases, a new software
requirement, implemented by uploading a
change to the flight software, compensated for
a hardware component’s failure or degrada-
tion. For example, when a damaged solar ar-
ray couldn’t deploy correctly, a new flight soft-
ware requirement added needed functionality
in response. In another anomaly, noisy trans-
ducers caused excessive resetting of hardware
components, a risk to the system. In response,
a new flight software requirement compen-
sated for the noise.

In seven other cases, the anomaly was re-
solved with a new software requirement to
handle an unusual event or scenario. In these
cases, the requirements discovery involved un-
foreseen system behavior that was resolved by
requiring additional fault tolerance for similar,
future incidents. In one anomaly, for example,
an unexpected outflow of debris temporarily
blinded the spacecraft, making it difficult to
determine its position in space. Consequently,
new software requirements made the space-
craft robust against similar future events.

In testing and operations, requirements dis-
covery was often resolved by changing the
software in the systems studied. In testing,
new requirements emerged most often from
subtle dependencies among software compo-
nents or between the software and hardware.
In operations, rare scenarios or hardware
degradations caused critical anomalies re-
solved by urgent, unplanned software require-
ments changes.

Discovery resolved by changing procedures
The second mechanism also involves new

requirements, but in these cases, the projects
implemented the new requirement via an op-
erational procedure. Newly discovered re-
quirements or interactions are dealt with by
changing the process external to the software
so that the software doesn’t reach the anom-
alous state again. Such anomalies usually in-
volve unexpected requirements interactions
detected during testing or operations. Analyz-
ing the anomaly sometimes results in a new re-
quirement that certain activities be performed

in a specific order (for example, to prevent a
race condition) or in a specific timing relation-
ship. For example, in one case, a software
fault monitor issued redundant off-commands
from a particular state reached during testing.
The developers decided to prevent these re-
dundant commands procedurally by selecting
limits that would avoid that state in the future.

In testing, 30 anomaly reports had an “in-
formation development” target and a “miss-
ing or incomplete procedure” type. Of these,
three anomaly reports displayed this mecha-
nism. In post-launch operations, seven critical
anomalies had the same target and type. In
each case, a procedure implemented the new
requirements knowledge.

For example, one anomaly identified the
need to recover the commands remaining to be
executed after an abnormal termination oc-
curred. This requirement was resolved by cre-
ating a new operational procedure to respond
to similar situations in the future. In another
case, a problem occurred when two streams of
data were sent simultaneously. The anomaly
revealed a latent requirement that hadn’t been
previously recognized to ensure that only one
stream of data at a time be transferred. Again,
this was handled procedurally. In a third
anomaly, the software behavior was incorrect
in that a maneuver was erroneously performed
twice rather than once. This occurred when
the software was loaded to memory too
soon—that is, to an area of memory that was
currently active. The fix was to add a proce-
dure to enforce a new requirement preventing
the configuration problem’s recurrence.

Handling a new requirement via a proce-
dural change avoids the cost and risk of up-
dating complex, safety-critical flight software.
However, allocating requirements to proce-
dures carries the risk that the procedure won’t
execute correctly on each occasion when the
situation requires it. Resolving critical anom-
alies such as these via changes to procedures
places high dependence on the requirements
knowledge and the operational personnel’s
motivation. The fact that several operational
anomalies have the “procedures not followed”
type indicates that such dependence can be a
risky strategy.

The anticipated length of a system’s lifetime
might be another factor in deciding whether to
handle a requirement procedurally. For a rela-
tively short-lived system (such as a mission to

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 5

In testing, new
requirements

emerged
most often
from subtle

dependencies
among software
components or

between the
software and

hardware.

Mars, measured in months), a change to oper-
ational procedures might make sense. For a
relatively long-lived system (such as a seven-
year trip to Saturn followed by a multiyear sci-
entific mission), there will inevitably be person-
nel turnover and ensuing loss of requirements
knowledge, potentially adding risk.

Discovering requirements
confusion

The third and fourth mechanisms differ
from the first two in that they involve the dis-
covery of a requirements confusion rather
than a missing or incomplete requirement. In
these cases, the software works correctly, but
the testing or operational personnel are sur-
prised by its behavior.

Confusion resolved by changing documentation
In this mechanism, projects resolved an

anomaly by fixing the documentation. This
might mean updating the design document to
better explain the rationale for the require-
ments, adding a flight rule to describe the re-
quired preconditions or constraints on issuing
a particular command, or documenting a hard-
ware unit’s unexpected effect on software be-
havior in the idiosyncrasies list. In each case,
the documentation changes to better explain
the required behavior and the requirements ra-
tionale. The goal is to prevent this anomaly’s
recurrence.

For example, one testing anomaly was
caused by testing personnel’s incorrect as-
sumption that some heaters would remain off
as the software transitioned between two spe-
cific modes. The anomaly was resolved by cor-
recting the design documentation to describe
the software requirement implemented by an-
other component to turn the heaters off when
this transition occurred.

Analyzing problem reports from testing
showed 28 anomalies with an “information de-
velopment” target and “documentation” type.
Five of these involved the testers making incor-
rect assumptions about the requirements. These
misunderstandings emerged during testing when
correct software behavior didn’t match the
testers’ expectation. Such testing reports were
handled by correcting the source of the misun-
derstanding via improved documentation.

Requirements confusion also caused criti-
cal operational anomalies in the systems.
Analysis identified three such anomalies with

an “information development” target and
“documentation” type. Of these, one anomaly
involved requirements confusion. In that case,
the anomaly reported a drop in battery power
resulting from a requirements misunderstand-
ing of the behavior initiated by using a com-
mand. The corrective action was to document
the required behavior and associated command
in an operational flight rule.

Operational anomalies due to requirements
confusion occasionally resulted in improved
documentation of a procedure. In these cases,
communication of a known constraint im-
proved. For example, in one anomaly, testers
didn’t understand a required precondition for
a calibration (that the instrument be in an in-
ertial mode). They avoided the problem in fu-
ture calibrations by documenting this require-
ment in the systems checklist.

Confusion resolved without any change
In this case, anomaly reports are false posi-

tives, reporting a problem when the software
actually behaved correctly and according to the
specified requirements. In each of these anom-
alies, the projects subsequently determined that
no change was necessary. For example, in some
cases, no change was made because the situa-
tion couldn’t recur in the rest of the mission.

There were 64 testing anomalies with a
“none/unknown” target and a “nothing fixed”
type. In most cases, resolving the anomaly re-
port without a fix was appropriate. For exam-
ple, several anomalies referred to problems
that were no longer relevant (for example, the
current build removed the issue). However, an-
alyzing testing-problem reports shows that in
26 anomalies with this ODC signature, the
same requirements confusion might recur in
operations. These merit additional attention.

For example, in one anomaly, the tester as-
sumed that a telemetry (data) channel pro-
vided the current value of a counter, whereas
the channel instead provided the counter’s
high-water mark (the highest value yet
recorded for the counter). So, even when the
counter was reset, the telemetry value re-
mained constant. The requirements rationale
was sound—that the fault-protection software
needs information regarding the worst case
over a time interval. However, the tester’s mis-
understanding was reasonable and indicated
that a similar erroneous assumption might be
possible later.

Operational
anomalies due

to requirements
confusion

occasionally
resulted in
improved

documentation
of a procedure.

6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

On the basis of our experience with this type
of anomaly,5 we recommend that when both the
situation in the anomaly report and the require-
ments confusion can recur, developers should
attempt to prevent future occurrences after de-
ployment. Required behavior that surprises the
testers should not also surprise the users.

In this type of situation, testing can be a
crystal ball into operations. System behaviors
that confuse the test team might also confuse
operators down the road. For example, in one
testing incident, the tester expected that com-
mands issued to a hardware unit when it was
turned off would be rejected. Instead, the com-
mands unexpectedly executed when the com-
ponent was rebooted. This behavior was nec-
essary in the system’s context, and it matched
the specifications. However, tardy execution
of the commands was understandably not the
behavior that the tester expected. If this con-
fusion recurred in operations, it could cause a
serious problem. In this case, the test incident
acted as a crystal ball into future possible op-
erational problems. Calling attention to the
mismatch between software behavior and op-
erator assumptions helped reduce the possibil-
ity of this confusion recurring.

Also, four cases of requirements confusion
in operations warranted clarifying the docu-
mentation to avoid future anomalies due to
the same requirements confusion. Interest-
ingly, in all four anomalies, the projects de-
cided that they didn’t need to take corrective
action to remedy the requirements misunder-
standing for the system in question. However,
in all four cases, the anomaly report noted
that the misunderstanding could also occur on
future spacecraft. That is, the operations
teams perceived the requirements misunder-
standing as a recurrent risk on other systems.
This focus on the next-generation systems by
operational personnel suggests the need for
defect analysis to broaden the perspective
from considering a single system to consider-
ing a set, or family, of similar systems (in this
case, interplanetary spacecraft). These results
suggest that better reuse of knowledge regard-
ing past requirements confusions might fore-
stall similar requirements confusions on other
systems in the same product family.

Guidelines for ongoing
requirements discovery

The experiences we report here show that

requirements discovery caused anomalies dur-
ing both testing and operations in the systems
we studied. Furthermore, similar mechanisms
for requirements discovery and resolution were
at work in testing and operations. Given that
requirements discovery continues throughout a
system’s lifetime, several guidelines for mining
anomaly reports are evident when managing
this evolution:

■ Plan for continuing requirements engi-
neering activity. Our experience confirms
the value of continued requirements engi-
neering activities throughout a system’s
lifetime: maintenance of requirements ra-
tionales; explicit traceability from require-
ments to procedures, as well as to software;
and analysis of requirements interactions.
(Eric Dubois and Klaus Pohl have de-
scribed this problem as “continuous re-
quirements management.”6)

■ Mine anomaly reports. Bug reports from
testing and operations are a rich, under-used
source of information about requirements.

■ Use reports of near misses and false posi-
tives to prevent problems. Software be-
havior that surprises the testing teams
might also surprise the users. We too often
ignore these mismatches between actual
and expected behavior when the software
behaves correctly. This throws away a
chance to avoid future requirements con-
fusions by improving documentation or
training now.

■ Implement newly discovered requirements
by updating software rather than proce-
dures. Asking users to avoid a certain
scenario is overly optimistic if the conse-
quences of error are severe.

■ Flag patterns of requirements confusion
for extra attention. Analyzing anomalies
across the eight spacecraft systems reveals
certain recurring patterns of misunder-
standings. Possible responses include
adding these patterns to inspection check-
lists, test cases, and assertion checking.

■ Take a product line perspective. Many re-
quirements discoveries that occur during
testing and operations were described in
the anomaly reports as also applying to
other, similar systems in the same product
line. Cross-correlating requirements dis-
coveries among these systems can reduce
anomalies across multiple systems.

M a r c h / A p r i l 2 0 0 4 I E E E S O F T W A R E 7

Required
behavior that
surprises the
testers should

not also
surprise the

users.

W e are working to apply these guide-
lines to future NASA projects both
on spacecraft and ground-based

systems. One such collaborative application
will be to the software controllers for the net-
work of antennas used to communicate with
Earth-orbiting and deep-space missions.

Acknowledgments
We thank Daniel Erickson and the Mars Explo-

ration Rover engineers and test teams for their assis-
tance and feedback, and the reviewers for several useful
suggestions. An early version of this article was pre-
sented at the 11th IEEE Conference on Requirements
Engineering in September 2003. NASA’s Office of Safety
and Mission Assurance Center Initiative UPN 323-08
funded this research, which we performed at the Jet
Propulsion Laboratory under a contract with NASA.
National Science Foundation grants CCR-0204139 and
CCR-0205588 partly support Robyn Lutz’s research.

References
1. R. Lutz and I.C. Mikulski, “Operational Anomalies as a

Cause of Safety-Critical Requirements Evolution,” J. Sys-
tems and Software, vol. 65, no. 2, Feb. 2003, pp. 155–161.

2. S. Lauesen and O. Vinter, “Preventing Requirements
Defects: An Experiment in Process Improvement,” Re-
quirements Eng. J., vol. 6, no. 1, Feb. 2001, pp. 37–50.

3. N. Leveson, Safeware, Addison-Wesley, 1995.
4. R. Chillarege et al., “Orthogonal Defect Classification—

A Concept for In-Process Measurements,” IEEE Trans.
Software Eng., vol. 18, no. 11, Nov. 1992, pp. 943–956.

5. R. Lutz and I.C. Mikulski, “Requirements Discovery
during the Testing of Safety-Critical Software,” Proc.
25th Int’l Conf. Software Eng. (ICSE 03), IEEE CS
Press, 2003, pp. 578–583.

6. E. Dubois and K. Pohl, “RE 02: A Major Step toward a
Mature Requirements Engineering Community,” IEEE
Software, vol. 20, no. 1, Jan./Feb. 2003, pp. 14–15.

8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

Robyn R. Lutz is a senior engineer at the Jet Propulsion Laboratory and an associate
professor of computer science at Iowa State University. Her research interests are in safety-
critical product lines, defect analysis, and the specification and verification of requirements,
especially for fault monitoring and recovery. Contact her at 226 Atanasoff Hall, ISU, Ames, IA
50011; rlutz@cs.iastate.edu.

Inés Carmen Mikulski is a senior engineer at the Jet Propulsion Laboratory. Her re-
search interests center on developing a project- and institution-level metrics program as part
of JPL and NASA’s software quality improvement initiative. She received her MS in mathemat-
ics from XXXXXXXXXXXXXXXXX. Contact her at JPL, MS 125-233, 4800 Oak Grove Dr.,
Pasadena, CA 91109; ines.c.mikulski@jpl.nasa.gov.

Fill?

