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Abstract

The Mobile Agent Intrusion Detection System (MAIDS) is an agent based distributed Intrusion Detection System (IDS). A dis-
ciplined requirement engineering process is developed to build MAIDS. The starting point is a high level description of intrusions
expressed as Software Fault Trees (SFTs). Then the SFTs are translated to Colored Petri Nets (CPNs) that specify the IDS design.
Subsequently, the CPNs are implemented as software intrusion detection agents in the MAIDS agent system. By using SFT and
CPN as the theoretical underpinnings, the design and implementation of MAIDS can be verified and the design and implementation
errors can be substantially reduced.

This paper presents a tool that automatically translates CPNs that specify IDS design into software intrusion detection agents in
MAIDS. Together with the translator we have developed to convert SFTs that model intrusions into the CPN for IDS design, this
tool can automatically generate intrusion detection software agents from a high level description of intrusions.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The widespread use of the Internet and the easy avail-
ability of high-speed access have greatly increased the
frequency and the range of attacks that are being
launched against computer systems across the world.
Tools for launching attacks are easily available on the
web, thus reducing the level of computer expertise re-
quired to launch attacks. Moreover, with the Internet
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now being used for a wide range of commercial and mil-
itary purposes, the damage caused by such attacks has
also increased dramatically. An Intrusion Detection Sys-
tem (IDS) not only helps the administrators to detect
intrusions and limit damages, but also helps to identify
the source of attacks, which sometimes acts as a deter-
rent especially in case of insider attacks.

Currently, IDSs are often designed using ad hoc
methods, and they are prone to design and implementa-
tion errors. This is a critical problem for IDSs where a
faulty design and implementation might give the end
user a false sense of security. We propose to use formal
methods to reduce design and implementation errors of
IDSs. The Mobile Agent Intrusion Detection System
(MAIDS) is a mobile agent based distributed IDS devel-
oped at the Information Security Lab in Iowa State Uni-
versity (Information Security Lab, 2003). The biggest
advantage of MAIDS, which distinguishes it from other
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IDSs, is that it is designed, implemented and verified
using formal method, with mobile agent code automat-
ically generated from formal specification of intrusions.
The MAIDS project uses Colored Petri Net (CPN) and
Software Fault Tree (SFT) as the formal models in
developing IDS.

CPN has been extensively used to model complex
and distributed systems (Jensen, 1992). We propose to
use CPN to model IDS design since CPN can model
the gathering, classification and correlation of activities
of IDS very well. There also exist CPN tools (such as,
Design/CPN, Denmark CPN Group at University of
Aarhus, 2003) which allow us to simulate attacks in or-
der to validate the correctness of an CPN design of
IDS.

However, a way is needed to ensure that a correct
design is translated into a correct implementation. If
the CPN to intrusion detection software agents trans-
lation is done manually, it is difficult to make such an
assertion. If we use an automated tool, which makes
the translation based on some sound theoretical rea-
soning, we can assure the implementation does reflect
the correct design. In this paper, we explain an ap-
proach to translate CPN for IDS design to intrusion
detection agents, and present a compiler to make the
translation.

The rest of the paper is organized as follow. Section 2
contains a brief outline of several distributed IDSs that
have been proposed. We will also introduce our previous
work using a formal method for describing attacks. Sec-
tion 3 gives an overview of the MAIDS agent system de-
sign. Section 4 describes the design of the compiler.
Section 5 contains the implementation of the compiler.
Section 6 presents the experiment for the compiler and
the compiler-generated code. Section 7 concludes our
paper and gives future directions.
2. Background and our previous work

In this section, we will review the distributed IDSs.
We will also briefly explain our previous work using
SFT to specify intrusions and using CPN as intrusion
detection design template.

2.1. Distributed intrusion detection systems

IDS should be able to correlate data from different
machines to detect distributed attacks. Some attackers
use several machines to coordinate an attack. For exam-
ple, in FTP Bounce Attack, three machines are used
(CERT Coordination Center, 2003a). Recently some
large scale coordinated attacks, such as Distributed De-
nial of Service (DDoS) attacks, increase dramatically
(Dittrich, 2003). In order to detect these distributed at-
tacks, distributed IDS is needed.
Many distributed IDSs have been proposed. Of these
systems, the mobile agent based distributed IDSs are
very promising for the following reasons (Slagell, 2001):

Reduction of data movement: this ensures that processing
of the data can be done at the place where it is gathered.
This increases the efficiency of the IDS and reduces the
time lag.
Load-balance: mobile agents can spread the workload of
the IDS over a number of machines.
Flexibility: agents can operate independently of each
other. So individual pieces can be removed, modified
and improved while the system continues to function.
Fault-tolerance: the fact that agents can operate inde-
pendently also implies that the system can continue to
work even when one agent is destroyed in an attack.
This makes the IDS fault tolerant.
Detection of distributed attacks: the use of mobile agents
makes it easier to correlate and detect distributed
attacks.

The Java Agents for Meta-Learning (JAM) project at
Columbia University uses a secured agent infrastructure
for continuous learning of fraud and intrusion patterns
(Lee et al., 1999). This system uses two kinds of agents:
local fraud detection agents learn how to detect fraud
and provide intrusion detection services with a single cor-
porate information system, and the other meta-learning
agents combine the collective knowledge acquired by
individual local agents. The JAM project focuses on
using intelligent learning algorithm to generate intrusion
detection rules, whereas our project focuses on using for-
mal method to model intrusion and intrusion detection
and automatically generate intrusion detection agents.

The Event Monitoring Enabling Responses to Anom-
alous Live Disturbances (EMERALD) project was
developed by SRI International (Porras and Neumann,
1997). EMERALD uses a hierarchical approach that
provides three levels of analysis performed by a three-
tiered system of monitors: service monitors, domain
monitors, and enterprise monitors. These monitors have
the same basic architecture: a set of profiler engines (for
anomaly detection), signature engines (for signature
analysis), and a resolver component that integrates the
results generated from the engines. EMERALD is a sur-
veillance and response architecture oriented toward the
monitoring of distributed network elements. Agents in
our project also have a hierarchical architecture: low le-
vel agents are for data collection, middle level agents are
for data correlation, and high level agents are for intru-
sion alarm generation. The main difference is we use for-
mal methods to model intrusion and intrusion detection
in the development of our IDS.

The Autonomous Agents For Intrusion Detection
(AAFID) project uses a flexible and distributed IDS
infrastructure (Spafford and Zamboni, 2000). There
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are agents, transceivers, monitors and user interfaces.
AAFID uses agents as their lowest-level element for
data collection and analysis and employs a hierarchical
structure to allow for scalability. All the agents in a host
report their findings to a single transceiver. Transceivers
control these agents and report their results to monitors.
Monitors can be organized in a hierarchical structure
that a monitor may in turn report to a high-level moni-
tor. In AAFID, though the agents can communicate
with each other, they are architecturally and conceptu-
ally independent. It is the responsibility of the monitors
to make sense of the information they get from the var-
ious agents. Our agents also have a hierarchical architec-
ture, but our agent code is automatically generated from
SFT description of intrusions.

Distributed Intrusion Detection System (DIDS) was
developed by University of California, Davis (Snapp
et al., 1991). This system focuses on extending the intru-
sion detection from single segment of network to arbi-
trary large networks. The architecture for the system
includes a host manager for monitoring each host, a
LAN manager for monitoring each LAN in the system,
and a central manager which is in a central secure host
and receives event reports from hosts and LAN manag-
ers, processes these reports, correlates events and gener-
ates intrusion alarms. In DIDS, the monitoring and
analysis tasks are distributed among the hosts and
LAN managers. The central manager gets distributed
audit data and correlates events, so it views the entire
system and detects intrusions involving multiple hosts
and networks. DIDS is similar to our system in that
we all use distributed sensors to monitor the hosts and
the networks, and a central manager to generate alarms.
The difference is DIDS uses expert system and rules to
match intrusion patterns and our system uses SFT to
model intrusions and CPN to model intrusion detection.

Common Intrusion Detection Framework (CIDF)
aims at enabling different intrusion detection and re-
sponse components to interoperate and share informa-
tion (Intrusion Detection Hotlist, 2003). The CIDF is
a standard proposed by the Information Technology
Office of the Defense Advanced Research Projects Agency,
University of California––Davis, Information Sciences
Institute, Odyssey Research, and others. CIDF views
IDSs as consisting of discrete components that commu-
nicate via message passing. CIDF consists of four kinds
of IDS components: Event Generators, Event Analyz-
ers, Event Databases and Response Units. CIDF is a
big step towards getting different IDS to interoperate
with each other. Since intrusions are taking on a grander
scale, many attacks can be orchestrated over a wide area
network, and over a long period of time. As IDSs are
developed by various vendors and deployed to various
locations, it is very important for the IDSs to be able
to share information, infer possible distributed and
coordinated intrusion, and warn others about impend-
ing attacks. Our system uses an architecture that resem-
bles what describes in CIDF in that we use low level
agents to collect distributed data, which correspond to
Event Generators in CIDF; We use middle level agents
to correlate events, which correspond to Event Analyz-
ers in CIDF; we use high level agents to generate alarms,
which correspond to Decision and Response Unit in
CIDF. And we also use database backend to store
events, which is like Event Database in CIDF. CIDF
only gives a framework for IDS, and no special method
is given to detect intrusions. Our MAIDS use SFT to de-
scribe intrusion, use CPN to specify intrusion detection
template and generate intrusion detection agents auto-
matically using the compiler described in this paper.

2.2. Use of SFT for specifying intrusion

The SFT used to model the intrusions is a backward
search (Helmer et al., 2001). It begins with an intrusion
as the root node and traces back through the possible par-
allel and serial combinations of events that caused such an
intrusion. Basic SFT is static, and it cannot represent time
orders of events. However, the time relationships among
events are critical in intrusion detection domain. To pre-
cisely model intrusions, we extend basic SFT with time
constraints (Wang et al., submitted for publication).

SFT analysis of intrusions results in a number of ben-
efits in IDS design (Helmer et al., 2001): SFT enables
structured analysis of intrusions, including severity and
probability analysis; SFT analysis assists the IDS devel-
opment process by modeling intrusions, helps to identify
priorities for development, and specifies requirements
for an IDS; and SFT models of intrusions may help to
identify appropriate countermeasures.

2.3. Use of CPN for specifying design of the IDS

CPN is a well-documented and frequently used
abstraction for modeling complex and distributed sys-
tems. It has been applied to a variety of problem do-
mains, including security, network protocols, mutual
exclusion algorithms, VLSI chip designs and chemical
manufacturing systems. In recent years, CPN has been
used in the areas of fault management and security sys-
tem. It is very well suited for designing IDS because it
can describe clearly the complicated and complex inter-
action, classification and correlation of activities of IDS.
Moreover, CPN design of IDS provides an efficient way
to verify IDS design. Since IDS is difficult to test because
intrusion activities are complicated to simulate, this is
very beneficial. The Design/CPN tool from the Univer-
sity of Aarhus, Denmark, is used in our project to draw
and analyze CPN representations of the IDS system de-
sign, and simulate attacks to verify the CPN representa-
tion of the IDS design. This tool allows us to both save
and load the CPN diagrams from eXtensible Markup
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Language (XML) files. Our compiler uses the XML rep-
resentation of the CPN diagrams as input to the auto-
matic code generation of our agent system.
2.4. SFT to CPN translation

SFT can model intrusions and help in requirement
analysis for an IDS. However, it is not a good model
for IDS design. The reason is that SFT can only describe
the events and sequences of events that cause the intru-
sions in a system, and it does not describe the procedure
to detect and correlate these events. To model an IDS
design, an execution model like CPN is needed.

CPNs are very powerful in modeling IDS, but, they
are complicated. A designer must not only have ade-
quate knowledge in the intrusion domain, but also have
a good command of CPN. Tremendous effort is needed
to manually develop a CPN for an IDS design.

Thus, we propose a way to map from an SFT descrip-
tion of attacks to CPNdesign templates for IDS (Wang et
al., submitted for publication). In this paper, we present
the MAIDS compiler which makes the translation from
the CPN specification of IDS toMAIDS software agents.
3. MAIDS agent system design

The unique feature of the MAIDS project is that it is
developed using a disciplined requirements engineering
process. The entire process comprises of primarily three
steps.

1. A high-level description of intrusions is created using
a SFT.

2. This description is then automatically translated into
a CPN which serves as the design specification for
IDS. The CPN design specification for the IDS can
be optimized and verified using formal tools such as
Design/CPN (Denmark CPN Group at University
of Aarhus, 2003).

3. The CPN is then translated into the actual implemen-
tation of IDS software agents.

The MAIDS development hierarchy is given in Fig. 1.
In the following we present the basis for the translation
from the second stage to the third stage.

The MAIDS software agent system closely follows
the system design as encapsulated by the CPN represen-
tation. Leaf places correspond to data source agents.
Each leaf place in the original CPN is created at each
host throughout the network, and is responsible for cre-
ating tokens and holding them until they are picked up
by other mobile agents. Data source agents communi-
cate with a local database that is being populated by
some local data sources, such as an auditing server
and other IDSs.
A leaf transition has leaf places among its inputs and
corresponds to a mobile agent. These mobile agents tra-
vel through the computer network, pick up tokens and
correlate events at every site that they visit. Migration
of the leaf transitions is horizontal (circulating among
the monitored hosts) rather than radial (making re-
peated trips to and from the analyst�s location).

The root place in the CPN corresponds to the console
of the administrator who is monitoring the system. The
internal places correspond to stationary agents that hold
tokens, and the internal transitions are similar to leaf
transitions except for they are stationary.

At each monitored host there is an agent server, a local
database, and an assortment of local data sources. At the
analyst�s location there is another agent server to serve as
the creating point of all agents and a console application
that serves administrative role for all agents. Fig. 2 illus-
trates the overall architecture of theMAIDS agent system.
4. Compiler design

The design of the compiler has the following goals:

Correctness: It should preserve the correctness of the
CPN in the translation;
Minimal manual intervention: The whole idea behind
having the tool is to enable system administrators to
use MAIDS without knowing the internals of the sys-
tem. So it should require minimal manual intervention
from the users in the translation;
Generality: It should not restrict the ability of the CPN
to represent a wide variety of IDS;
Flexibility: Though the Design/CPN tool (Denmark
CPN Group at University of Aarhus, 2003) is the most
popular way to represent CPN, the tool should not con-
strain the users to use it. If the user decides to use some
other representation of CPN, the changes that have to
be made to our automated tool to handle this should
be as painless as possible;

The compiler assumes that the IDS design as specified
by the CPN is correct. If there are flaws in the CPN they
will get passed on to the agent code. The correctness of
the CPN can be checked and analyzed using the Design/
CPN tool by simulation (Denmark CPN Group at Uni-
versity of Aarhus, 2003).

4.1. Translation of three basic elements

A CPN diagram is composed of three basic elements
- places, transitions and arcs. Each of these elements
corresponds to a certain class in the MAIDS agent sys-
tem. We provides the following CPN elements to
MAIDS class mapping based on the description in
Section 3.
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4.1.1. Places

Places, which have no incoming arcs, are called Leaf
places (DataPlace class in MAIDS). All other places are
called Inner places. Leaf places are equivalent to Data
Source agents, which monitor the database and generate
tokens when some events happen. To create a data
source agent the following information has to be ex-
tracted from a leaf place in the CPN diagram.
1. Name.
2. A short description.
3. Database information (name of table and table field

in database monitored by this place).
4. Tokens generated at this place. Detailed

information about the tokens is extracted from
the arcs.
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For each inner place, there�s no agent generated for it
and it serves as a container for tokens. To create an
instantiation of the inner place class with a unique label
we need to extract the name for an inner place.

4.1.2. Transitions

Transitions that have at least one Leaf place as a
source place are called Leaf transitions. All other transi-
tions are Inner transitions. Leaf transitions are equiva-
lent to Mobile Transition agents (MobileTransition
class), and Inner transitions are equivalent to Stationary
Transition agents (StationaryTransition class) in
MAIDS. Both Mobile Transition and Stationary Tran-
sition agents have the same code. The only difference be-
tween them is their mobility which is hidden in their
superclass code. So for all transitions in the CPN, the
following information has to be extracted.

1. Name of the transition.
2. Names of source places.
3. Names of incoming arcs.
4. The formula used to unify tokens in the transition

(guard formula).
5. Tokens generated by the transition. Detailed infor-

mation about these tokens is extracted from the arcs.

4.1.3. Arcs

For arcs and tokens in CPN, we use a Token class to
represent it. The following information needs to be ex-
tracted from each arc.
1. Name of arc.
2. Its source place or transition.
3. Its destination place or transition.
4. The tags of the data it is carrying.
5. For arcs that originate from leaf places we also need

to extract database information. This includes names
of the fields in the database from which the token
data has to be obtained, and the value of the field
in the database, which would result in the generation
of a token.

4.2. Algorithms for the translation

At a high level, the compiler design can be illustrated
by Algorithm 1.

Algorithm 1. (Compiler)

Open CPN file
for each element in the CPN file do

Determine the type (leaf or inner place, leaf or inner
transition, arc) of the element
Extract information about the element
Use the type and the mapping given above to decide
what MAIDS class to create
Use the extracted information to create this MAIDS
class file

end for

Close CPN file

The MAIDS compiler comprises two distinct
stages. A set of objects, which holds information about
the three CPN elements mentioned above, serves as
the interface between these two stages. The first
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stage parses the CPN representation, extracts informa-
tion about each CPN element and populates these
objects. The second stage uses the data stored in
these objects to generate MAIDS agent code. The flexi-
bility goal of the compiler can be achieved, as a new
CPN representation would involve changing only the
first stage.

The steps involved in the working of the compiler is
as Fig. 3, the pseudo code for this two-stage design is
as Algorithm 2.
Maids Agents
(interface)

Transition
(abstract)

IPlace
(interface)
Algorithm 2. (Two-stage compiler)

Open CPN file
for each element in the CPN file do

Determine the type of the element
Extract information about the element
Determine the object based on the type obtained
Put the extracted information in the object

end for

Close CPN file
for each object in the interface object set do

Determine the type of the element to which it
corresponds
Get the data from this object
Use the type obtained above to determine the
MAIDS class to be created
Use the data to create this MAIDS class

end for
custom agents

Place

DataPlaceMobileTransition StationaryTransition
(abstract) (abstract)

AlertPlace

custom agentscustom agents

Fig. 4. The MAIDS class hierarchy.
4.3. Evaluation of design

The compiler design has achieved the design goals:

Correctness: The compiler strictly follows the CPN ele-
ment to MAIDS agent translation outlined in Section 3.
Minimal manual intervention: No manual intervention is
needed in the transition procedure.
Generality: The design does not make any assumptions
that are specific to a particular attack. So the compiler
can generate software agent code to detect any attack
where the intrusion detection can be modeled using a
CPN.
Flexibility: The design makes a clear distinction between
the parsing and the code generation stages of the com-
piler. Moreover it defines a clear interface between these
two stages through the Place, Transition and Token
objects. This ensures that if the CPN representation
changes, then only the parsing stage of the compiler
needs to be changed.
5. Implementation

The current MAIDS implementation uses the Voy-
ager agent platform, version 4.5, from Recursive Soft-
ware (2003). At each monitored host and console
machine a Voyager server has to be running. In this sec-
tion, we first introduce the major classes we used in the
compiler.

5.1. MAIDS agent classes

The hierarchy of the agent classes is given in Fig. 4.

Leaf (data source) places: The responsibility of a data
place is to generate fresh tokens from local event dat-
abases. It must implement a work( ) method, taking no
arguments and returning a TokenBag. This method is
called periodically within the DataPlace superclass code.
Leaf (mobile) transitions: This embodies both the topol-
ogy and behavior of the CPN. This must implement the
following methods

java.lang.String[ ] sources( );
java.lang.String[ ] tokenSpec( );
Token[ ] unify (Token[ ] sourceTokens);
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Of these methods, the only non-trivial method is �uni-
fy�. This method decides whether the tokens passed to it
should be unified. If so, it returns a new array of tokens;
else it returns null. As for the other two methods,
sources( ) returns an array of the labels of the places that
have arcs to this source, and tokenSpec( ) returns an ar-
ray of token colors and implicitly determines what kind
of input the unify( ) method will see.
Internal places: No special agent needs to be written for
this as it only serves as a container.
Internal transitions: These are very similar to Leaf tran-
sitions with the only difference that they need not be
mobile.
Root (console) place: There is no need to instantiate
the root place. This is automatically done by the
MAIDS console which implements the IPlace inter-
face and identifies itself in the CPN with the alert
label.

5.2. Compiler class structure

The following is a description of the major classes
used by the MAIDS Compiler. Fig. 5 illustrates the
MAIDS compiler implementation.

PlaceToken: This class stores all the information that is
required to create a Token object in the MAIDS Data-
Place class. This includes token name, description and
data.
Stage 1

Augmented
CPN
representatio

e.g.XML fil
generated by
Design/CPN

Parse
(Parser)

TransitionInfo
(Transitions)

TransitionToken
(Arcs)

CodeGeneratio
(Code Generato

MAIDS
Agents

Stage 2

Fig. 5. Implementation of t
PlaceInfo: This class stores all the information that is
required to create a subclass of the MAIDS DataPlace
class. This includes place name, tokens and database
information for that place.
DBInfo: This is a simple class that serves as a container
to hold database information (name of database table,
name of fields in this table). The PlaceInfo class uses this
class to create a subclass of the DataPlace class.
TransitionToken: This class stores all the information
that is needed to create a Token object in the
MAIDS StationaryTransition or MobileTransition
class. This includes token name, data, destination
and urgency.
TransitionInfo: This class stores all the information
required to create a subclass of the MAIDS Stationary-
Transition or MobileTransition class. This includes
transition name, type, sources, unifying formula and
tokens.
Parse: This is the abstract class that all CPN parser
classes have to extend. All subclasses of this class have
to implements a main( ) function which takes the name
of the CPN file as input, and returns the following
vectors:

v[0]––A vector containing all the PlaceInfo objects
that are derived from the leaf places in the CPN
representation.
v[1]––A vector containing all the TransitionInfo
objects that are derived from the transitions in the
CPN file.
n

e

DBInfo
(Arcs) (Arcs)

PlaceToken

PlaceInfo
(Places)

n
r)

MAIDS Compiler

he MAIDS compiler.
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v[2]––A vector containing names of all the Inner
places in the CPN file.

CodeGen: This is the class that does the actual code gen-
eration. It takes the Vector returned by the main( )
method of the Parse class as its input. For each Place-
Info object it creates a class which extends the MAIDS
DataPlace class. For each TransitionInfo object it
checks the type. If the type is �Mobile�, it creates a class
that extends the MAIDS MobileTransition class. If the
type is �Stationary�, it extends the MAIDS Stationary-
Transition class.

MAIDS provides a way to start the system from a
specifications file �spec.txt�. This file contains the names
of the agents as well as Voyager host information (Slag-
ell, 2001). The CodeGen class creates a �spec.txt� file that
contains the names of all the classes it created.

5.3. Database information

Data Source agents need to interact with the dat-
abases to get the information on monitored system to
produce tokens. To create the Data Source agents,
information about the names of the tables and fields
being monitored need to be extracted from the CPN.
These tables in the local database must be populated
by some data sources, such as auditing tools and other
IDSs.

5.4. XML representation of CPN using design/CPN tool

The Design/CPN tool (Denmark CPN Group at Uni-
versity of Aarhus, 2003) (versions 4.0.4 and higher) al-
lows the user to save all CPNs as XML files. This tool
is a very widely used tool to represent CPN. The
XML representation generated by this tool is used as in-
put to the compiler.

The CPN parser class, which extends the Parse class,
can be used to parse representations of this class, assum-
ing that the XML uses �cpnet.dtd� as the style sheet. This
class assumes that the CPN diagram drawn using this
tool satisfies the following minimum requirements.

1. The CPN diagram should be well-formed, i.e., there
should be no arc that connects directly a place with
a place or a transition with a transition.

2. All transitions, places and arcs should have names
associated with them.

3. Every place should also have a color associated with
it. All tokens coming into this place or originating
from this place should be of this same color.

4. Every arc should have a token description associated
with it.

If the style sheet changes, this class will need to be
changed.
5.5. Incorporating a new CPN representation

A new CPN representation can be incorporated by
the steps outlined below.

1. Implement the Parser class, which extends the Parse
class. This class should implement the main( ) method
of the Parse class as mentioned previously.

2. Examine the constructors of PlaceInfo, Transition-
Info, DBInfo, TransitionToken and PlaceToken
classes to fill in the correct information into the cor-
responding objects.

3. Recompile and run the compiler on the new
representation.

The end user can easily incorporate any representa-
tion of the IDS. The system does not need to be reset
when rules are updated. The new agents can be gener-
ated and added to the system dynamically.

When some nodes are down and some agents are lost,
there is no impact on the functionality of other nodes
and other agents. When the nodes go up, new agents
can be launched again without impacting the current
agents.

In the following section, we demonstrate two exam-
ples of automatic generation of intrusion detection
agents from the CPN intrusion detection design
templates.
6. Experiments and results

In this section, we will describe two attacks in the
experimental scenario, namely, the FTP bounce attack
and the Trinoo DDoS attack.

6.1. FTP bounce attack

This attack exploits a weakness in certain FTP dae-
mons and a trust relationship between two hosts. A de-
tailed explanation of this attack is provided in (CERT
Coordination Center, 2003b). The basic steps involved
are:

1. Create a malicious file containing a valid remote shell
(RSH) message.

2. Identify a vulnerable FTP server (relay host) and a
host which trusts the relay host and is running a
RSH daemon (victim).

3. Upload the file to the relay host.
4. Redirect the output of the FTP server to the RSH

port on victim using the PORT command.
5. Download the file directly to the RSH port of the

victim.
6. The victim accepts the file as a command to be run as

root user.



Target RSH
Attacker FTP host HOST

Receive 

Execute it

Compose an
egg file for 

executing on victim

Connect to FTP server

PUT egg file on FTP server

PORT target_IP RSH_port

GET egg file

Transfer egg file

the egg file and   

Fig. 6. Diagraph for FTP bounce attack.
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FTP bounce attack is a good candidate for testing
MAIDS as it is a distributed attack involving three ma-
chines (attacker, relay and victim) as show in Fig. 6.

The CPN diagram describing the intrusion detector
for detecting this attack, as displayed by the Design/
CPN tool, is given in Fig. 8 (the text representation of
CPN for FTP bounce attack is in Appendix A). As
can be seen from the CPN diagrams, there are five
events which constitute positive identification of the
FTP bounce attack. Four of these––FTP PORT request,
FTP PORT success, FTP retrieve request and FTP re-
trieve success––take place at the relay host and the other
one––RSH connection from FTP––takes place at the
victim host.

The CPN diagram for FTP bounce attack depicted in
Fig. 8 was saved as XML files using the Design/CPN
tool and input into the MAIDS compiler. The following
files were created:
"pong"

Master Daemons

Connect

"png"

Attacker Victim

Specified size packet

Specified size packet

Set timer

Begin attack

End attack

Begin attack

End attack

Ping alive

HELLO

.

.

.

.

.

.

Fig. 7. Diagraph for TRINOO DDOS attack.
Places: NetworkMonitorFTP.java and Network
MonitorTCPConnections.java
Transitions: FTP_PORTFTP_PORT_OK.java, FTP_
RETR.java, FTP_RSH_CONN.java and FTP_
BOUNCE_ATTACK.java
spec.txt: This is a specification file used by MAIDS to
start the agent system to detect FTP bounce attack.
The agent names for detection of the FTP bounce attack
are listed. The intrusion detection agents can also be
loaded after MAIDS starts.

An intrusion script was used to launch the attack
from another host outside our local network. Two mon-
itored Linux hosts were involved, one as relay and the
other as target. The relay host was running a vulnerable
ftp server, which enables PORT commands regardless of
source or destination.

The frequency of events that MAIDS can handle de-
pends on the speed of data preprocessing. In the
MAIDS system, the data is supposed to have been pre-
processed. The data that is used by the MAIDS system
is pre-aggregated by software such as SNORT or
Tripwire.

The compiler does not deal with optimization. The
optimization is done in CPN design phase. The CPNs
that represent the IDS design are optimized in Design/
CPN software, and then compiled into agent code using
the compiler.

The performance of the MAIDS compiler generated
agents are compared with the performance of the hand
coded agents we used in our earlier research. For the
first experiment (low-traffic attack) an attack script
was used to generate 2 ftp attacks interspersed between
8 normal GET/PUT sequences. For second experiment
(high-traffic attack) an attack script was used to generate
2 ftp attacks interspersed between 48 normal GET/PUT
sequences. Both the generated and the hand-coded
agents were able to detect the FTP bounce attacks with-
out giving any false positives or false negatives.

Their relative performances from an efficiency view-
point, as summarized in Table 1 show that there is no
appreciable difference in the detection times between
hand coded agents and compiler generated agents.

6.2. TRINOO DDoS attack

DDoS attack is a massive coordinated attack and
normally involves hundreds or even thousands of ma-
chines that simultaneously attack the victim. In DDoS
attack, there are one or more control master programs
and many daemons controlled by the masters. When
masters issue attack commands to daemons, the dae-
mons launch simultaneous attacks, such as flooding
the victim (CERT Coordination Center, 2003c). This
will disrupt normal operation of the victim or even bring
down the victim.



FTP_BOUNCE
_ATTACKTCP_QUAD

Network 
Monitor:

FTP
            

FTP

Network 
Monitor:

TCP 
Connections
             

TCP_QUAD

FTP_BOU
NCE_ATTA

CK
[sec_FTP_RETR+1=sec_FTP_RETR_OK_D;
time_FTP_RSH_CONN<time_RETR_OK_D;]

TCP_QUAD

FTP_RSH
_CONN[time_FTP_RETR<time__FTP_RSH_CONN_D;]

TCP_QUAD

FTP_RETR
[sec_FTP_PORT_PORT_OK+1=sec_FTP_RETR_D;]

TCP_QUAD

FTP_PORT_
FTP_PORT_

OK
[sec_FTP_PORT+1=sec_FTP_PORT_OK;]

1’{ends={src=src_host,dst=dst_host},src=src_port,dst=21,
s=sec_FTP_BOUNCE_ATTACK,
t=time_FTP_BOUNCE_ATTACK}

1’{ends={src=src_host,dst=dst_host},
src=src_port,dst=21,s=sec_FTP_RSH_CONN,
t=time_FTP_RSH_CONN}

1’{rtype=RESPONSE,conn={ends={src=dst_host,
dst=src_host},src=21,dst=src_port},
value="2xx",s=sec_FTP_RETR_OK_D,
t=time_FTP_RETR_OK_D"}

1’{ends={src=src_host,dst=dst_host},
src=src_port,dst=21,s=sec_FTP_RETR,
t=time_FTP_RETR}

1’{ends={src=src_host,dst=dst_host},
src=src_port,dst=21,
s=sec_FTP_RETR,t=time_FTP_RETR}

1’{ends={src=dst_host,dst=vic_host},
src=20,dst=514},
s=sec_FTP_RSH_CONN_D,
t=time_FTP_RSH_CONN_D"
table_tag="FTP RETR OK"}

1’{ends={src=src_host,dst=dst_host},src=src_port,
dst=21,s=sec_FTP_RETR_D,
t=time_FTP_RETR_D}

1’{ends={src=src_host,dst=dst_host},src=src_port,
dst=21,s=sec_FTP_PORT_FTP_PORT_OK,
t=time_FTP_PORT_FTP_PORT_OK}

1’{rtype=COMMAND,conn={ends={src=src_host,
dst=dst_host},src=src_port,dst=21},
value="RETR",s=sec_FTP_RETR_D,
t=time_FTP_RETR_D",table_tag="FTP RETR REQUEST"}

1’{ends={src=src_host,dst=dst_host},src=src_port,
dst=21,s=sec_FTP_PORT_OK,t=time_FTP_PORT_OK}

1’{rtype=COMMAND,conn={ends={src=src_host,
dst=dst_host},src=src_port,dst=21},
value="PORT.*,2,2$",s=sec_FTP_PORT,t=time_FTP_PORT",
table_tag="FTP PORT REQUEST"}

1’{rtype=RESPONSE,conn={ends={src=dst_host,
dst=src_host},src=21,dst=src_port},
value="2xx",s=sec_FTP_PORT_OK,t=time_FTP_PORT_OK",
table_tag="FTP PORT OK"}

Fig. 8. CPN for FTP bounce attack.

Table 1
Detection times for the basic FTP bounce attack (in seconds)

Low-traffic attack High-traffic attack

Hand coded agents 11 15
Compiler generated agents 13 16
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The Trinoo DDoS attack (Dittrich, 2003) is used as
test case in our experiment. Trinoo DDoS attacks
normally consist of two steps. First, a Trinoo network
is created, composed of one or several masters and
many daemons controlled by the masters. Second,
the attack is launched by issuing an attack command
to the master servers from the attacker. After getting
the attack command from the attacker, the masters
will command all the daemons to send packets to
the victim machine.

Communication from Trinoo masters to daemons is
via 27444/udp, and from Trinoo daemons to masters
is via 31335/udp by default. When a daemon starts, it
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initially sends a ‘‘*HELLO*’’ command to the master.
Masters maintain a list of active daemons controlled
by them and use a keep-alive procedure to find out
which daemons are alive. When a Trinoo master sends
a ‘‘png’’ command to a daemon it controlled, the dae-
mon need to reply to the master by sending string
‘‘pong’’ to indicate it is alive.

An attacker remotely controls Trinoo masters via
TCP connections to port 27665/tcp (by default) on
the masters� host. To start up a DDoS attack, an
attacker need to connect to this port and issue
id_TRINOO-
ATTACK_pTCP_QUAD

ftp_connec
tion(snort)

FTP

id_trinoo-
attack_t

id_INITIALI
ZATION_p

TCP_QUAD

id_INITIALI
ZATION_t

id_MASTER-
STARTUP_p

TCP_QUAD

id_MASTER-
STARTUP_t

id_DAEMON-
STARTUP_p

TCP_QUAD

id_DAEMO
STARTUP

TCP_QUAD

1’{ends={src=src,dst=dst},src=src_port,
dst=dst_port,s=sec_ATTACK,t=time_ATTACK}

1
d

1’{ends={src=src,dst=dst},src=src_port,
dst=dst_port,s=sec_INITIALIZATION,
t=time_INITIALIZATION}

1’{ends={src=s
dst=dst_port,s=
t=time_PING-A

1’{ends={src=src,dst=dst},src=src_port,
dst=dst_port,s=sec_INITIALIZATION,
t=time_INITIALIZATION}

1’{rtype=COMMAND,conn={ends={src=attacker_host,
dst=master_host},src=attacker_port,dst=27665},
value="BETAALMOSTDONE",
s=sec_ATTACKER-CONNECT-MASTER,
t=time_ATTACKER-CONNECT-MASTER,
tabletag="TCP COMMAND"}

1’{ends={src=src,dst=dst},
src=src_port,dst=dst_port,
s=sec_MASTER-STARTUP,
t=time_MASTER-STARTUP}

1’{rtype=COMMAND,conn={ends={src=attacker_host,
dst=master_host},src=attacker_port,dst=27665},
value="G0RAVE",s=sec_MASTER-STARTUP-COMMAND,
t=time_MASTER-STARTUP-COMMAND,
tabletag="TCP COMMAND"}

1’{ends={src=src,dst=dst}
dst=dst_port,s=sec_DAEM
t=time_DAEMON-START

1’{rtype=COMMAND,conn={ends={src=daem
dst=master_host},src=daemon_port,dst=3133
value="*HELLO*",s=sec_DAEMON-TO-MAS
t=time_DAEMON-TO-MASTER,
tabletag="TCP COMMAND"}

1’{rtype=C
dst=daem
value="PN
t=time_MA

1’{rtype
dst=ma
value=
t=time_

Fig. 9. CPN for TRINO
commands. The attacker can issue a ‘‘mtimer N_sec-
onds’’ command to set the attack time and then issue
‘‘dos victim_ip’’ command to begin the DDoS attack.
When masters receive this DoS attack command, they
issue ‘‘aaa password victim_ip’’ command to all dae-
mons they control to launch DoS attacks to the victim
machine.

The detailed explanation of the Trinoo attack can be
found in (Dittrich, 2003). Fig. 7 shows the communica-
tions in TRINOO attack. Fig. 9 is the CPN for detecting
TRINOO DDoS attack.
id_trinoo-
attack_p

TCP_QUAD

N-
_t

id_PING-
ALIVE_p

id_PING-
ALIVE_t

[time_MASTER-SEND-60000
<time_DAEMON-REPLy;]

id_ATTACK_p TCP_QUAD

id_ATTACK_t

[sec_INITIALIZATION<sec_ATTACK;
sec_PING-ALIVE<sec_ATTACK]

’{ends={src=src,dst=dst},src=src_port,
st=dst_port,s=sec_trinoo-attack,t=time_trinoo-attack}

rc,dst=dst},src=src_port,
sec_PING-ALIVE,
LIVE}

1’{ends={src=src,dst=dst},src=src_port,
dst=dst_port,s=sec_ATTACK,t=time_ATTACK}

,src=src_port,
ON-STARTUP,

UP}

on_host,
5},

TER,

1’{ends={src=src,dst=dst},src=src_port,
dst=dst_port,s=sec_PING-ALIVE,
t=time_PING-ALIVE}

OMMAND,conn={ends={src=master_host,
on_host},src=master_port,dst=27444},
G",s=sec_MASTER-SEND,
STER-SEND,tabletag="TCP COMMAND"}

1’{rtype=COMMAND,conn={ends={src=daemon_host,
dst=master_host},src=daemon_port,dst=31335},
value="PONG",s=sec_DAEMON-REPLY,
t=time_DAEMON-REPLY,tabletag="TCP COMMAND"}

1’{ends={src=src,dst=dst},src=src_port,
dst=dst_port,s=sec_ATTACK,t=time_ATTACK}

=COMMAND,conn={ends={src=attacker_host,
ster_host},src=attacker_port,dst=27665},

"DOS victim_host",s=sec_ATTACKER-COMMAND,
ATTACKER-COMMAND,tabletag="TCP COMMAND"}

1’{rtype=COMMAND,conn={ends={src=master_host,
dst=daemon_host},src=master_port,dst=27444},
value="aaa victim_host 144ads1",
s=sec_MASTER-COMMAND,
t=time_MASTER-COMMAND,
tabletag="TCP COMMAND"}

O DDOS attack.
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The CPN diagram for TRINOO DDoS attack de-
picted in Fig. 9 was saved as XML files using the De-
sign/CPN tool and input into the MAIDS compiler.
The following files were created:

Places: NetworkMonitorTCPConnections.java
Transitions id_MASTER-STARTUP_t.java id_DEA-
MON-STARTUP_t.java id_PING-ALIVE_t.java id_
ATTACK_t.java id_INITIALIZATION_t.java id_tri-
noo-attack_t.java
spec.txt: This is a specification file used by MAIDS to
start the agent system to detect DDoS attack.

We set up an experiment to test the intrusion detec-
tion software agents automatically generated from the
CPN, using the Trinoo DDoS attack described above.
The generated software agents were able to detect the at-
tack without giving any false positives or false negatives.

The performance of the MAIDS compiler generated
agents was compared with the performance of the hand
coded agents we used in our earlier research. The aver-
age detection time was 25 seconds using hand coded
agents, and 22 seconds using compiler generated agents.
7. Conclusions and future work

The main advantages of MAIDS is the use of a for-
mal method to assure that the IDS satisfies a set of
high-level requirements (SFT specification of intru-
sions). Formal method and formal tools are used in
the development of the IDS to reduce design and
implementation errors. CPN representations of IDS
design template, which can be recognized and dis-
played by Design/CPN tool, are used as input to a
compiler to generate software intrusion detection
agents. Design/CPN allows the correctness of the
IDS design to be checked before moving into the
implementation stage.

A unique feature of MAIDS is the automated
tools to generate intrusion detection agents given a
high level description of intrusions. The compiler pre-
sented in this paper is an important step toward auto-
mated tools to generate intrusion detection agents.
The automatic generation of software intrusion detec-
tion agents from description of intrusions is beneficial
because it not only prevents human coding errors
from compromising the correctness of the IDS system
design, but also provides a convenient way for end
users to generate and launch new intrusion detection
agents when new intrusion types are found. The sim-
plicity of updating MAIDS to detect new intrusions is
important since new intrusion types emerge every day.
Some IDSs like ‘‘snort’’ provide configuration files
which can be updated to include new intrusion signa-
tures (Caswell and Roesch, 2003). However, the rules
in their configuration files can only describe simple
signatures, and most complicated and coordinated
intrusions cannot be described precisely and conven-
iently. Our tool provides an easy way of describing
sophisticated intrusions using a SFT model and gen-
erating the intrusion detection agents to detect the
new intrusions.

Currently, we use simple token unification based on
timestamps, sequence numbers and machine IP ad-
dresses. Nowadays, attackers often move around many
machines before a real attack is launched or use fake
IP addresses in attacking, which makes the trace back
very difficult. Now we are looking at how to unify to-
kens based on other information such as user identifiers
so the correlation of events among machines can be
more effective and trace back can be easier.
Appendix A. Text representation of CPN for FTP bounce

attack

PLACE:
Name: FTPB_relay_DS
Header: ftp monitor
Token: FTP_PORT, FTP PORT REQUEST, ftp PORT
requested, cid j sequence, *timestamp j time: FTP_PORT
_OK, FTP PORT SUCCESS, ftp PORT succeeded, cid j
sequence, *timestamp j time: FTP_RETR, FTP RETR
REQUEST, ftp RETR requested, cid j sequence, *time-
stamp j time: FTP_RETR_OK, FTP RETR SUCCESS,
ftp RETR succeeded, cid j sequence, *timestamp j time
DB: org.gjt.mm.mysql.Driver, mysql, event, signature

PLACE:
Name: FTPB_victim_DS
Header: tcp monitor
Token: FTP_RSH_CONN, RSH CONNECT FROM
FTP, rsh connection from ftp, cid––sequence, *time-
stamp––time DB: org.gjt.mm.mysql.Driver, mysql,
event, signature

TRANSITION:
Name: FTPB_MT1
Source: *FTPB_relay_DS
InToken: FTP_PORT, FTP_PORT_OK
Formula: I_1_sequence + 1 = I_2_sequence
OutToken: FTP_PORT & FTP_PORT_OK,seq2,
I_2_sequence,FTPB_Place1

PLACE:
Name: FTPB_Place1

TRANSITION:
Name: FTPB_MT2
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Source: *FTPB_relay_DS, FTPB_Place1
InToken: FTP_PORT & FTP_PORT_OK, FTP_RETR
Formula: I_1_seq2 + 1 = I_2_sequence
OutToken: FTP_RETR,time3 seq3,L_2_time I_2_sequ-
ence,FTPB_Place2

PLACE:
Name: FTPB_Place2

TRANSITION:
Name: FTPB_MT3
Source: *FTPB_victim_DS, FTPB_Place2
InToken: FTP_RETR, FTP_RSH_CONN
Formula: L_1_time3�300000 < L_2_time

OutToken: FTP_RSH,seq3 time4,I_1_seq3 L_2_time,
FTPB_Place3

PLACE:
Name: FTPB_Place3

TRANSITION:
Name: FTPB_MT4
Source: *FTPB_relay_DS, FTPB_Place3
InToken: FTP_RSH, FTP_RETR_OK
Formula: I_1_seq3 + 1 = I_2_sequence AND L_1_
time4�300000 < L_2_time

OutToken: FTP_BOUNCE_ATTACK,NULL,NULL,
alert,9
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