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Abstract

The difficulty of managing variations and their potential interactions across an entire product line currently hinders safety analysis in
safety-critical, software product lines. The work described here contributes to a solution by integrating product-line safety analysis with
model-based development. This approach provides a structured way to construct state-based models of a product line having significant,
safety-related variations and to systematically explore the relationships between behavioral variations and potential hazardous states
through scenario-guided executions of the state model over the variations. The paper uses a product line of safety-critical medical devices
to demonstrate and evaluate the technique and results.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Product lines; Safety-critical systems; Model-based development; State-based modeling
1. Introduction

The analysis and management of variations (such as
optional features) are central to the development of
safety-critical, software product lines. We define a software
variation as ‘‘the ability of a software system or artifact to
be changed, customized, or configured for use in a particu-
lar context’’ (Clements and Northrop, 2001). In safety-crit-
ical product lines such as pacemakers (Ellenbogen and
Wood, 2002), mobile communication devices for emer-
gency workers (Doerr, 2002), constellations of satellites
(Dehlinger and Lutz, 2005), and medical-imaging systems
(Schwanke and Lutz, 2004), balancing safety assurance
and reuse management has become a major obstacle to
safety analysis: A safety-critical product line must satisfy
its safety properties in all allowable configurations (i.e.,
choices of variations). The notion of mandatory features
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(commonalities) and optional variations (variabilities)
makes it possible to reuse some analyses of feature interac-
tions. However, they introduce new dependencies (con-
straints between commonalities and variabilities and
among variabilities) that can make it difficult to provide
assurance that safety properties will be satisfied in the pres-
ence of variations’ interactions. This discourages the addi-
tion of variations and limits the potential for reuse of
product-line artifacts. Therefore, the development of reus-
able safety analysis techniques that can incorporate the
variations without compromising the safety of individual
products is needed.

The development of software product lines thus lacks
comprehensive methods to ensure the satisfaction of safety
properties of the product line while still taking advantage
of the product line’s inherent reuse potential (Lutz,
2000a,b). Specifically, Kang (2006) identifies the following
as open problems for the practical use of product lines for
safety-critical software:

• Verifying quality attributes, such as safety and reliabil-
ity, and detecting feature interactions that may violate
the safety properties or quality attributes.
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• Modeling, analyzing and managing product-line fea-
tures and feature interactions while avoiding the feature
explosion problem.

The work described in this paper is motivated by and
addresses these problems in terms of the design, analysis
and development of a safety-critical, software product line.

The state-based modeling approach in this paper builds
upon two existing product-line safety analysis techniques:
Software Failure Modes, Effects and Criticality Analysis
(SFMECA) and Software Fault Tree Analysis (SFTA).
The advantages of our state-based modeling approach for
the safety analysis of a product line, compared with SFM-
ECA and SFTA, include (Liu et al., in press):

• Analysis and modeling of timing/ordering-sensitive fail-
ure events to determine their possible safety implica-
tions.

• Simulation of the behaviors described by the require-
ments in the fault tree, to illustrate the violation of a
safety property.

• Exploration of possible solutions when safety properties
are found to be violated to identify an adequate mitiga-
tion strategy.

For these reasons, chaining the traditional safety analysis
mechanisms (SFMECA and SFTA) with the state-based
modeling for the product line strengthens the safety analy-
sis across a product line.

The main contribution of this paper is thus a technique
to perform safety analysis on the variations in a product
line using state-based modeling. This technique makes it
more practical to check that safety properties for the prod-
uct line hold in the presence of variations through scenario-
guided execution, or animation, of the model. Further,
utilizing the technique described in this paper at the design
level allows safety engineers to discover faults early enough
to design mitigation strategies before implementation and
deployment. Relationships between the behavioral varia-
tions and hazardous states can be at that point systemati-
cally explored and new safety requirements derived. The
improved management and analysis of variations obtained
by using this technique promotes safer reuse of artifacts
developed for the product line.

The work presented here is part of a larger effort
(described in Section 2) to investigate how safety analysis
can become a reusable asset of a product line by developing
a framework and a suite of techniques for the safety anal-
ysis of product lines. The long-term goal is to be able to
provide verification results for a new system in the product
line in a timely and cost-efficient manner.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 gives an overview of the
approach and introduces the running example (a pace-
maker product line). Section 4 describes the state-based
modeling and execution of the product line to validate
safety properties. Section 5 discusses and evaluates the
results in terms of their use in safety-critical systems. Sec-
tion 6 offers some concluding remarks.

2. Background and related work

Our work is based on the overlapping areas of software
product-line engineering, model-based development and
safety analysis. In comparison with previous work, we
focus on the use of state-based models to enable verifica-
tion of safety-related properties in the presence of prod-
uct-line variations.

A software product line is a set of software systems
developed by a single company that share a common set
of core requirements yet differ amongst each other accord-
ing to a set of allowable variations (Clements and Nor-
throp, 2001; Weiss and Lai, 1999). The product-line
engineering methodology is advantageous in that it exploits
the potential for reuse in the analysis and development of
the core and variable requirements in each member of the
product line (Lutz, 2000a). The initial stage of product-line
engineering, domain engineering, defines the commonality
and variations of the product line. The later stage, applica-
tion engineering, then binds the variations to specific prod-
ucts (Svahnberg et al., 2005).

Model-based development of critical systems has dem-
onstrated advantages. By executing or animating the model
at design time, the sufficiency and correctness of the
requirements and design can be verified prior to implemen-
tation. State-based modeling has been shown to support
verification of behavioral requirements (Czerny and Heim-
dahl, 1998). Campbell et al. created UML diagrams and
then modified the initial values in UML diagrams to create
hazardous situations to confirm that the model was still
safe (Campbell et al., 2002). Executable UML allows ani-
mation of scenarios to verify the models that have been
built (Mellor and Balcer, 2002). More recently, Gomaa
has shown how executable UML statecharts can be used
for product-line models (Gomaa, 2005).

While work to date concentrates on how to validate
whether a single system’s model behaves correctly, the
work reported here investigates whether the members of
a product line display safe behavior (i.e., satisfy certain,
selected safety properties). The representation of variations
in the model is thus of primary importance.

The state-based modeling and safety-analysis method
proposed here is compatible with several widely-used prod-
uct-line engineering frameworks. A variety of feature dia-
grams or variation models, including those in Kobra
(Atkinson et al., 2002), FORM (Kang et al., 1998) and
FAST (Weiss and Lai, 1999), can be annotated with refer-
ences to the associated modeling elements in this work.
Sophisticated tool support, such as the Rhapsody tool-set
we used here, allows the animation of a state-based design
model (Douglass, 1999). Similarly, our use of scenario-
guided testing of state-based design models has been previ-
ously shown to provide a powerful way to identify omis-
sions in requirements (Harel and Marelly, 2003).
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There has been widespread attention to UML modeling
of product lines (Gomaa, 2005). From the perspective of
promoting reusable components, Clauss extends UML to
support feature diagrams and adds elements describing
variations to the UML package diagram (Clauss, 2001).
Doerr categorizes the relationships that exist in a variation
model and also ties these to UML notation (Doerr, 2002).

Safety analysis for software product lines is still in its
infancy. As in a single system, the derivation of safety
properties comes from the hazard analysis (Leveson,
1995) for a product line. Previous work has described a for-
ward search for hazardous effects of possible failures cou-
pled with a backward search from faults to their
contributing causes as a means for safety analysis of a sin-
gle system (Lutz and Woodhouse, 1999).

More recently, we have worked to detail how safety
analysis assets can be reused within a product line as well
as to identify specified limits on reuse of product-line safety
analysis assets. We have provided an extension of bi-direc-
tional, safety analysis approach to product lines (Feng and
Lutz, 2005), used it to aid in the certification of safety-crit-
ical product lines (Dehlinger and Lutz, 2005), and pro-
duced product-line analysis tools (e.g., PLFaultCAT
(Dehlinger and Lutz, 2006), DECIMAL (Padmanabhan
and Lutz, 2005)). The techniques and tools in this frame-
work aim to provide developers with tool-supported mech-
anisms during a product line’s domain and application
engineering phases to investigate the safety of the product
line’s requirements, design and architecture. Additionally,
this effort explores how safety analysis assets can be reused
within a product line as well as identifies the limits on reuse
of product-line safety analysis assets.

The running example that we use to demonstrate our
approach is a pacemaker product line. Previous work
has been done in state-based modeling of a pacemaker
by Goseva-Popstojanova et al. (2003) and Douglass (1999)
and as examples with the Rhapsody toolset from I-Logix.
However, previous work in state-based modeling of pace-
makers considered the pacemaker as a single system
rather than as a product line of models, as is done here.
Goseva-Popstojanova et al., like us, is concerned with
safety properties and uses SFMECA to identify software
faults. These faults are then injected into a UML-based
architectural design model to identify and evaluate their
effects. Their approach helps identify which architectural
components add risk and merit additional development
resources but, unlike the work reported here, does not
verify safety properties.
3. Approach

The technique described here for safety analysis of soft-
ware product lines using state-based modeling consists of
five steps. We describe each of the steps briefly in this sec-
tion and then more rigorously in Section 4, where they are
applied to the pacemaker product line.
3.1. Method overview

This section describes the five steps of our technique.
Steps 1 through 4 are done in the domain engineering
phase with the entire product line being taken into consid-
eration. Step 5 is done in the application engineering phase
with the verification being performed for each product
member.
3.1.1. Commonality and variability analysis

The Commonality and Variability Analysis (CVA)
(Weiss and Lai, 1999) is an established technique for pro-
viding domain definitions for the product line. It identifies
the requirements for the entire product line (commonali-
ties) and for specific product members (variabilities, or
variations).
3.1.2. Hazard analysis

This step applies a hazard analysis technique called Soft-
ware Fault Tree Analysis (SFTA) to the product line. A
SFTA takes a hazard as the root node and identifies the
contributing causes to it. A SFTA is a safety analysis tech-
nique widely used in high-assurance applications that
assists domain engineers to systematically find causes of a
certain hazard (an undesired event that can cause great
loss) in a ‘‘top-down’’ manner. The nodes are hierarchically
connected via AND or OR logic gates to describe the cau-
sal relationship to their parent nodes. The leaf nodes of the
SFTA are basic events.

PL-SFTA is an extension of traditional SFTA to include
the variations within a product line (Dehlinger and Lutz,
2004; Dehlinger and Lutz, 2006). It labels each leaf node
of a SFTA with the commonality or variability associated
with that leaf node. The commonality and variation infor-
mation are taken from the Commonality and Variability
Analysis (CVA) of the product line provided by the previ-
ous step of this technique.

A PL-SFTA considers all instantiations of the product
line rather than a single system. To derive a particular
product-line member’s fault tree from the PL-SFTA, the
PL-SFTA is pruned such that the resulting SFTA only con-
tains those failures that are caused by the commonalities
and the variations defining the specific product-line mem-
ber. Interested readers are directed to Dehlinger and Lutz
(2004) for details.
3.1.3. Variation model generation

In this step, the leaf nodes of the PL-SFTA are mapped
into architectural components. The behaviors of each com-
ponent are then modeled in a state chart model. This pro-
cess starts from the product that has the fewest variations,
meaning that most of its behaviors are shared by all the
products in the product line. We then incrementally build
the model by adding variations of other products and the
associated dependencies as described in the next section.
Such state models, once built, can be largely reused for
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the safety analysis of other systems within the same prod-
uct line.

3.1.4. Scenario derivation

We derive both required scenarios and forbidden scenar-
ios from the PL-SFTA. Looking at the root-node of the
PL-SFTA, if it (the hazard) or its negation (the safety prop-
erty) can be mapped into a sequence diagram, we create
state models to model the commonalities and variations
of the components indicated in the leaf nodes of a current
PL-SFTA. We call scenarios derived from the safety prop-
erty required scenarios, and scenarios derived from hazards
forbidden scenarios (Harel and Marelly, 2003).

If the root node cannot be mapped into testable scenar-
ios (largely due to tool limitations, discussed in Section 5),
we go to the root-node of the sub-tree and repeat the above
process. By the end of the second step the original PL-
SFTA should be fully covered. A PL-SFTA is fully covered
if its root node, or each of its sub-tree’s root nodes, is
mapped into a sequence diagram, and its leaf nodes are
captured in the state models.

3.1.5. Scenario-guided model analysis
In this step we take the safety-related scenarios and cor-

responding state model constructed above and fully exer-
cise the scenarios against the state model. We say that a
model is fully exercised if each of the legal combinations
of commonalities, variations, and dependencies specified
in the leaf nodes of the PL-SFTA is separately enabled in
the state model and tested against the same scenario.

We use the TestConductor toolset (described below) to
exercise the model. For required scenarios, if any test fails
(the model execution does not match the specified sce-
nario), the inconsistencies are identified in the state model
and the design is updated. For forbidden scenarios, if the
test shows that illegal behavior related to hazards is possi-
ble, we identify the cause in the state model and update the
design.

The five steps described above are performed iteratively
(i.e., if the output generated from a certain step affects pre-
vious steps, those steps need to be repeated) until no errors
are found. For example, gaps in coverage found in Step 5
may result in specifying of additional product-line require-
ments in Step 1 or only to modeling errors. At that point,
implementation or more formal verification is appropriate.
Section 4 gives a detailed description of each of the steps.

3.2. Software tools

The integrated, visual development environment of
Rhapsody is used to build the product-line statecharts.
The process described above uses executable UML in the
Rhapsody software modeling environment (Rhapsody,
2005) and the associated tool, TestConductor. Both are
products from I-Logix.

The Rhapsody development environment supports the
process activities of checking the model for inconsistencies,
and of animating the sequence diagrams and the state-
charts. The toolset also permits injection of inputs and
events into the model during run time, and automated
comparison of the designed sequence diagram with the ani-
mated sequence diagram to verify output events. Rhapsody
is designed for real-time, embedded software development,
making it well suited to the pacemaker product-line
domain.

TestConductor provides a scenario-driven way to
explore the behavior of the model as different variations
are selected or de-selected, and as different values of varia-
tions are input. With TestConductor, multiple, distinct iter-
ations through the statechart can be specified, with a new
instance of an event or message being automatically gener-
ated each time. Thus, animation of multiple valid paths
through a statechart can be executed, supporting checks
that safety properties were satisfied. A limitation of the tool
for the product-line application is that it does not handle
time-out messages. We discuss in Section 5 how this
affected the validation process.

3.3. Pacemaker product line

To illustrate the process outlined in Section 3.1, we use a
pacemaker product line as a running example throughout
Sections 4 and 5. A pacemaker is an embedded medical
device designed to monitor and regulate the beating of
the heart when it is not beating at a normal rate. A
patient’s need for a pacemaker typically arises from a slow
heart rate (bradycardia) or from a defect in the electrical
conduction system of the heart. A pacemaker consists of
a monitoring device embedded in the chest area as well
as a set of pacing leads (wires) from the monitoring device
into the chambers of the heart (Ellenbogen and Wood,
2002). In our simplified example, the monitoring device
has two basic parts: a sensing part and a stimulation part.
The sensing part monitors the heart’s natural electrical sig-
nals to detect irregular beats (arrhythmia). The stimulation
part generates pulses to a specified chamber of the heart
when commanded.

The timing cycle of our simplified pacemaker consists of
two periods: a sensing period and a refractory period. Each
pacemaker timing cycle begins with the sensing period, dur-
ing which the sensor is on. If no heartbeat is sensed, a pulse
will be generated at the end of the sensing period. The
refractory period follows the sensing period but has the
sensor off to prevent over-sensing (i.e., sensing the pulse
it just generated). If a heartbeat is detected during the sens-
ing period, no pulse is generated and the refractory period
will be initiated. Thus, a timing cycle is the interval between
two natural heartbeats, between two pulses, or between a
heartbeat and a pulse, depending on the heart’s behavior.
The sensing period can vary between a lower rate limit
and a higher rate limit, according to a patient’s activity
level.

Typically, pacemakers can operate in one of three
modes: Inhibited, Triggered or Dual. Inhibited Mode is
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when the sensed heartbeat inhibits stimulation and causes
the pacemaker to restart the pacing cycle. Triggered Mode
is when a sensed heart beat triggers stimulation. Dual
Mode pacemakers have the ability to operate in either
Inhibited or Triggered Mode.

In our example, we only consider a single-chambered
product line of pacemakers that does pacing/sensing in
the heart’s ventricles. In actuality, some pacemakers are
dual-chamber, and the pacing/sensing algorithms applied
to each chamber can be different although highly coordi-
nated. This paper considers three different products within
the pacemaker product line: BasePacemaker, RateRespon-
sivePacemaker and ModeTransitivePacemaker.

A RateResponsivePacemaker has additional sensors for
detecting the patient’s motion, breathing, etc. This allows
the rate of the pacemaker to be responsive to the patient’s
current activity level. For example, when the patient is
exercising, his or her heart rate will naturally be higher.
A ModeTransitivePacemaker is a Dual Mode pacemaker
that can switch between Inhibited Mode and Triggered
Mode during runtime.

A safety property, motivates and explains the method:
the pacemaker shall always give a pulse to the heart when

no heartbeat is detected during the sensing period. The ratio-
nale behind this safety property is that when the heart has
bradycardia symptoms (slow heart rate), the lack of heart-
beat for a certain period is life threatening and thus must
be treated with an electrical pulse. This safety property
must hold for all systems in the pacemaker product line.
Commonalities

C1. A pacemaker shall have the following basic compon
C2. A pacemaker shall be able to operate in the Inhibited
C3. A pacemaker's pacing cycle length shall be the additi
C4. A pacemaker shall be able to set the senseTime to th
C5. A pacemaker shall keep the refractoryTime set at 20 
C6. A pacemaker shall be a single-chamber pacemaker.

Variations

V1. The senseTime of a pacemaker's pacing cycle may
800 msec to the URL_rate of 300 msec during runti

V2. A pacemaker may transition from Inhibited Mode to
V3. A pacemaker may have extra sensors to monitor a pa
V4. A pacemaker operating in Triggered Mode should c

is detected. [TRUE, FALSE]
V5. A pacemaker operating in Triggered Mode shou

senseTime. [TRUE, FALSE]

Dependencies

D1. A modeTransitive pacemaker must always confirm
detected while it is in Triggered Mode.

D2. A rateResponsive pacemaker must have additional se
D3. A modeTransitive pacemaker must only use the LRL

Triggered Mode.
D4. In a modeTransitive pacemaker, the rateResponsiv

value is in Inhibited Mode.

Fig. 1. Excerpts from pacemaker product-lin
4. Product line safety analysis using state-based modeling

This section describes each of the five steps outlined in
Section 3.1 in more detail and applies them to the pace-
maker product-line example.

4.1. Commonality and variability analysis

Requirements and features for a product line are often
specified in a Commonality and Variability Analysis
(CVA) (Ardis and Weiss, 1997; Weiss and Lai, 1999). A
CVA provides a comprehensive specification of the prod-
uct line that details the shared, core requirements for all
the products in the product line (i.e., the commonalities)
and the requirements specific to only some products (i.e.,
the variations). This specification helps in providing perti-
nent domain definitions, the core set of product features
and the scope of the product line. A portion of the CVA
for the pacemaker product line used here is given in
Fig. 1. The variations distributed among product-line
members are shown in Table 1.

4.2. Hazard analysis

The hazard analysis uses Product-Line Software Fault
Tree Analysis (PL-SFTA) both as a guide to deriving sce-
narios against which to test the models and to appropri-
ately scope the level of detail needed in the models for
safety analysis.
ents: Controller, Sensor and PulseGenerator. 
 Mode. 
on of senseTime and refractoryTime. 
e LRL_rate of 800 msec. 
msec. 

 vary by setting the senseTime from LRL_rate of 
me. [TRUE, FALSE] 
 Triggered Mode during runtime. [TRUE, FALSE] 
tient's motion, breathing, etc. [TRUE, FALSE]
onfirm that a pulse is issued every time a heartbeat 

ld only use the LRL_rate of 800 msec as the 

 that a pulse is issued every time a heartbeat is 

nsors.
_rate setting for senseTime when it is operating in 

e function is valid only when the modeTransitive 

e commonality and variability analysis.



Table 1
Products and their variations

Product name Variations

BasePacemaker
ModeTransitivePacemaker V2, V4, V5
RateResponsivePacemaker V1, V3
PL_Pacemaker V1, V2, V3, V4, V5

1884 J. Liu et al. / The Journal of Systems and Software 80 (2007) 1879–1892
4.2.1. Construct SFTA

The first activity is to construct the SFTA from the sys-
tem requirements and design. A SFTA is a widely used
backward safety analysis technique designed to trace the
causal events of a specified hazard down to the basic faults
of a single system (Leveson, 1995). The root nodes of fault
trees are often the negation of a safety requirement. Root
nodes may also be identified from preexisting hazard lists
or from events with catastrophic effects in a Software Fail-
ure Modes, Effects and Criticality Analysis (SFMECA). In
the case that an SFMECA exists, the generation of the
SFTA can be partially automated (Dehlinger and Lutz,
2006).
Fig. 2. Excerpt of pac
In the pacemaker product-line example introduced in
Section 3.3, the root node of SFTA is a negation of the
safety property (S1): the pacemaker fails to generate a pulse

when no heartbeat is detected during the sensing period.

4.2.2. Extend SFTA to include product line variations

The second activity is to extend the SFTA to include the
variations in the product line. A PL-SFTA is an extension
of traditional SFTA to include the variations within a
product line (Dehlinger and Lutz, 2004). It labels each leaf
node of a SFTA with a commonality or variation when
applicable. Each leaf node of the SFTA is checked to find
whether it is associated with one or several variations. If
the node can be affected by the choice of variations, this
leaf node is developed further (into a sub-tree) with the var-
iability and commonality information added from the com-
monality analysis.

The PL-SFTA in Fig. 2 shows an example in the bottom
left node ‘‘No pulse generated by the end of 300 ms sensing
time’’. Each leaf node within this fault tree refers to either
one of the commonalities or variations described in Section
emaker PL-SFTA.



Table 2
The Mapping between leaf nodes and components

Leaf node Component

Heartbeat occurred Heartbeat simulator
V3 Extra sensor, motion simulator
V1, C2, C4, V2, V4 Pacemaker Controller
C1 Base sensor, pulse generator, Pacemaker Controller
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3.3 to indicate which variations can contribute to the par-
ent node’s failure, or to a basic event, such as the node ‘‘No
heartbeat occurred’’.

The preliminary safety analysis described above provides
us with information regarding error-prone variation points
from a product line point of view. This is necessary and help-
ful in that it introduces domain knowledge about variations
into the analysis in a way that subsequent formal verification
methods might find difficult to capture. Failure to ade-
quately capture domain knowledge in safety analysis has
been identified as a cause of accidents (Hanks et al., 2002).

However, the descriptive and static nature of the SFTA
and SFMECA analysis makes it inadequate in terms of
analyzing the dynamic feature interactions in a product line
setting, and hence, in achieving asset reuse. By introducing
state modeling and scenario-guided design analysis, such
deficiencies can be addressed.

4.3. Variation model generation

The third activity is to map the leaf nodes of the PL-
SFTA into components. The behavior of each component
is then modeled in a state chart. Note that in this paper we
assume the existence of a software architecture design,
since the development of a product line architecture has
been thoroughly addressed in e.g., Gomaa (2005) and
Bosch (2000). Fig. 3 provides the UML Component Dia-
gram that describes the software architecture for our prod-
uct line. It consists of three major components: Pacemaker
Controller, Detection, and Pulse Generator, each of which
can be divided further into several sub-components. The
different products in the product line share this architecture
with the only difference being the presence or absence of
some components (Liu et al., 2005a,b).

4.3.1. Associate leaf nodes with components
First, the corresponding component(s) of each of the

leaf nodes in the PL-SFTA is obtained by looking at the
Fig. 3. Pacemaker archite
system’s architectural design. For example, the basic event
‘‘No heartbeat occurred’’ from Fig. 2 is generated by, and
thus here associated with, the component ‘‘Heartbeat Sim-
ulator’’. Similarly, the leaf node V3 from Fig. 2 (that allows
extra sensors) is tied to the component ‘‘ExtraSensor’’ in
Fig. 3. Table 2 describes the mapping between the compo-
nents in Fig. 3 and the leaf nodes in Fig. 2. (Note that C1
was not shown in Fig. 2 for readability.)

4.3.2. Incrementally construct the variation model

Each component identified above is then modeled using
state charts. The state model is built in an incremental fash-
ion in order to model variations for different products in
one state model. For example, we first model the Pace-
maker Controller of the BasePacemaker (Fig. 4), and then
incrementally add variations for the RateResponsivePace-
maker and the ModeTransitivePacemaker products.

We briefly describe the process of incrementally con-
structing the product-line state model from a safety analy-
sis perspective here.

• Creating BasePacemaker functionalities. Since every
model in the product line shares the BasePacemaker
functions, it is the baseline model. The BasePacemaker’s
behavior, shown in Fig. 4, has two states ‘‘On’’ and
‘‘Off’’. ‘‘On’’ is a composite (nested) state with two
sub-states ‘‘Sensing’’ and ‘‘Refractoring’’. The pace-
maker senses the heart beat in the ‘‘Sensing’’ sub-state
and waits for the heartbeat or pace to complete in the
ctural configuration.



Fig. 4. Pacemaker controller in BasePacemaker.
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‘‘Refractoring’’ sub-state. This statechart displays the
behavior that is common to all the pacemaker products
in the product line.

• Adding RateResponsivePacemaker functionalities. The
RateResponsivePacemaker’s statechart inherits that of
the BasePacemaker’s. The variations V1 and V3 of the
RateResponsivePacemaker are introduced into the
model by adding orthogonal substates to existing states
in the BasePacemaker’s statechart. For example, V3
indicates that the RateResponsivePacemaker has addi-
tional sensors for detecting the patient’s motion, breath-
ing, etc, to allow the rate of the pacemaker to respond to
the patient’s current activity level. Thus, the ‘‘On’’ state
in the statechart in Fig. 4 is expanded into an orthogonal
state composed of two composite states: one with sub-
states ‘‘Sensing’’ and ‘‘Refractoring’’ and the other with
sub-states ‘‘LRL_rate’’ and ‘‘URL_rate’’.

• Adding ModeTransitivePacemaker functionalities. The
statechart of the PL_Pacemaker inherits that of the
RateResponsivePacemaker’s, and adds functionalities
from the ModeTransitivePacemaker. This is done by
adding orthogonal substates and guarded transitions
to existing states. For example, the variations V2 and
V4 of the ModeTransitivePacemaker are introduced in
the following manner: the ‘‘On’’ state in the statechart
in Fig. 4 is expanded into an orthogonal state composed
of three composite states: one with sub-states ‘‘Sensing’’
and ‘‘Refractoring’’, one with sub-states ‘‘LRL_rate’’
and ‘‘URL_rate’’, and the third one with sub-states
‘‘Inhibited_Mode’’ and ‘‘Triggered_Mode’’. The transi-
tions between the ‘‘Sensing’’ and ‘‘Refractoring’’ sub-
states have condition connectors showing that the
behavior of these transitions are influenced by the choice
of ‘‘Inhibited_Mode’’ and ‘‘Triggered_Mode’’. For
example, when in ‘‘Triggered_Mode’’, the pacemaker
stays in the ‘‘Sensing’’ sub-state until the sensed event
(evSensed) is detected, at which point the pacemaker
goes to the ‘‘Refractoring’’ sub-state. The condition con-
nectors add guards to the transitions so that depending
on the current value of the condition, the statechart
takes different transitions and thus goes to different
states. This incremental construction forms the state
model for the PL_Pacemaker as it accommodates the
variations of the three products in the product line.
The process of incrementally building up the product
line variation model combines the Parameterized State
Machines and Inherited State Machines methods described
in Gomaa (2005). When a new variation is introduced, its
corresponding statechart inherits the existing statechart
and uses condition connectors (whenever necessary) to
model dependencies between different variations.

Since our goal is safety analysis, the statechart for each
component only models the behavior addressed by the leaf
nodes of the PL-SFTA and any additional behavior rele-
vant to the behavior. For example, the behavior of switch-
ing between the lower and upper rates for sensing a
heartbeat, a variation of the RateResponsivePacemaker,
is modeled in the statechart for Pacemaker Controller
because it is associated with leaf node V1. However, the
Log behavior in the Detection component, is not modeled
because it is not associated with any leaf node.

When multiple leaf nodes correspond to a single compo-
nent, the state chart for that component has to model the
variations. These variations may not necessarily all reside
in one product. For example, among the leaf-nodes that
are associated with component ‘‘Pacemaker Controller’’,
C2 and C4 belong to all three products in the product line,
V1 and V3 belong to the RateResponsivePacemaker, and
V2 and V4 belong to the ModeTransitivePacemaker.

The dependencies among variations that need to be
modeled for the safety analysis were those where one vari-
ation’s existence, value, or range of values depended on
another variation’s existence, value or range of values.
For example, in the PL_Pacemaker, the RateResponsive
function is valid only when the selected ModeTransitive
variation is Inhibited Mode. If Triggered Mode or Non-
Sensing Mode is selected, the RateResponsive variation is
invalid. The general solution is to add states representing
the change-of-value of the influenced variation, and to
add guards on the transitions between those value-
change-states in the influenced variation’s statechart.

4.3.3. Represent binding time for variations

Another complicating factor is that in some real-world
product lines, such as the pacemaker, a single variation
may be able to be bound at different times. For example,
the pacemaker’s cycle length value can be bound at product
architecture derivation time (in which case it is a BasePace-
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maker), or – if it is a Rate-Responsive pacemaker – at
either linking time (by the doctor) or at runtime (by an
extra sensor). Similarly, some pacemakers have a program-
mable option that allows the pacing mode to be set at link-
ing time, but changed at runtime through the mode
transition function.

We thus found it necessary to model four possible bind-
ing times for variations according to the criteria in Svahn-
berg et al. (2005):

(1) Product architecture derivation-time binding. In our
method, this is done in the state model generation
step.

(2) Compilation-time binding. In our method, the code is
automatically generated from the statechart model so
this binding refers to whether or not to include a cer-
tain piece in the code-generation. For example, the
Product-Line statechart models the behavior of both
the BasePacemaker and the RateResponsivePace-
maker. However, the system models a RateRespon-
sivePacemaker only if ExtraSensor is selected in the
code-generation; otherwise it models a BasePace-
maker.

(3) Linking-time binding. This binding can be viewed as
the initialization stage for operational execution. In
our method, this is modeled by selecting the Rhap-
sody tool’s ‘‘set parameter event’’ right at the start
of animation. For example, the initial value of the
cycle length parameter can be set when RateRespon-
sivePacemaker is animated. This is described further
in the next point.

(4) Run-time binding. An important application of our
method is run-time variation checking, since other
static analysis tools relating to product line varia-
tions, such as Decimal (Padmanabhan and Lutz,
2005) or PLFaultCAT (Dehlinger and Lutz, 2006),
are not able to do run-time checking. In our method,
this is realized by the injection of different events
during animation. This can be done manually or
through a simulator. Svahnberg, van Gurp and
Bosch have described this additional aspect of bind-
ing. They define ‘‘internal binding’’ as occurring
when the software contains the functionality to bind
to a particular variant. As an example of internal
binding, the UML condition connector proved to
be a useful way to capture the variable behavior of
the system in response to run-time changes in the
values of variations, such as run-time switches
between the different pacing modes. ‘‘External bind-
ing,’’ on the other hand, occurs when there is a per-
son (such as a doctor) or tool that binds the
variation (Svahnberg et al., 2005). As an example
of external binding, we can model the change in cycle
length in a RateResponsivePacemaker by injecting
the events evLRL_rate and evURL_rate from the
ExtraSensor at run time.
4.4. Scenario derivation

The fourth activity is the derivation of forbidden scenar-
ios from fault tree nodes and of required scenarios from the
negation of fault tree nodes. Fault trees describe ways to
push a system model to fail, or at least to find the vulner-
able points in the system by indicating potential fault
paths. The procedure to derive a scenario from a fault tree
node follows.

4.4.1. Derive the initial scenarios, starting from the root node

Beginning at the root node of the fault tree, consider
each lower level node. An intermediate node in the FTA
is either a hazardous event or an event leading to a hazard.
Given a node in the PL-SFTA, the sub-tree of such a node
is initially treated as a black-box system with the input
(stimuli from outside the black-box system) and output
(response to the input by the black-box system) informa-
tion extracted from the event description of the node.
The input and output information are then depicted as a
sequence diagram involving the black-box system and its
environment in a sequence diagram. If input or output
information cannot be extracted from a node, then the
refinement of this node (its children nodes) is inspected to
retrieve the information and derive scenarios.

For example, Fig. 5 models an initial forbidden scenario
for the root node of the fault tree shown in Fig. 2, ‘‘Excerpt
of Pacemaker PL-SFTA’’, as a sequence diagram. The root
node event describes the hazard: no heartbeat was sensed
during senseTime and no pulse was generated. In this case,
there is neither input from the environment nor output
from the system.

The scenario in Fig. 5 has two participants: the environ-
ment and the current system. The Tm(senseTime) denotes
the timeout event of senseTime. Here senseTime is a gen-
eral variable name that can be mapped to concrete values
in a specific product-line member.

4.4.2. Refine the scenario to be testable

The above sequence diagram cannot be tested using the
TestConductor tool because not all features of the
sequence diagrams in message sequence chart (MSC) syn-
tax are supported by the tool. In this case, the timeout
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event cannot be tested. Therefore, the above scenario is
refined in order to make it testable by the TestConductor
tool. The refined scenario is shown in Fig. 6.

The sequence diagram in Fig. 6 still has two partici-
pants: the environment and the current system. The time
interval in the environment is used to replace the timeout
event. This reflects the fact that, in implementing the sys-
tem, a heart simulator will be needed to simulate heart beat
signals. By setting the time interval between the time the
system starts (invoked by the ‘‘evStart’’ event) and the time
the heart simulator starts (invoked by the ‘‘evSimulatoOn’’
event) to be greater than the senseTime is then done, Fig. 6
depicts a scenario in which no heartbeat happens during
sense time. No output from the system in the diagram indi-
cates that no pulse is generated.

However, the above scenario is not generic enough in
that it restricts the interval to begin at the time system
starts. A more general scenario is to mark the start and
end of the interval by evSimulateOff and evSimulateOn
events, so that the pacemaker can start sensing at any time
during the system execution. It is desirable to have the
specified scenario as general as possible so the test results
are not confined to a specific phase of system execution.

If no testable scenarios can be generated for a certain
node, the analysis goes down one level in the PL-SFTA
to derive scenarios from the children nodes if possible. In
each case both the forbidden scenario and its negation
(the required scenario) are inspected.

The goal of this step is to map either the root node of the
PL-SFTA or all its children nodes into testable scenarios.
The exit criteria for this step is that the test scenarios are
at the same level of detail as the state model created in
the last step (shown in Section 4.3) and that the PL-SFTA
is fully covered. A PL-SFTA is fully covered if its root
node, or each of its sub-tree’s root nodes, is mapped into
a sequence diagram, and the behaviors indicated by the leaf
nodes are modeled by state models of their associated
architectural components.

4.5. Scenario-guided model analysis

The fifth activity is to exercise the state model against
the scenarios using the TestConductor tool to ensure that
the safety properties previously identified in the hazard
analysis always hold. TestConductor allows users to exe-
cute the state model, injecting messages on behalf of the
environment or certain system components and monitoring
the specified message sequences during execution time. It
warns the user if any inconsistencies between the specified
(or expected) scenario and the actual run-time scenario
are captured.

4.5.1. Construct product line scenarios

Each scenario is verified against the state models, with
one legal configuration of commonalities and variations
enabled on the state models at a time. ‘‘Legal’’ here means
that there is no violation of known product line dependen-
cies (Padmanabhan and Lutz, 2005). In order to enable
reuse of the sequence diagrams among the product-line
members, we first specify a generic sequence diagram for
the product line and then customize it according to the dif-
ferent configurations of variations. Note that although the
state model was developed from a product line perspective,
the model analysis must be done member by member in the
product line. Therefore all the generic variables/message
names in the sequence diagrams have to map to concrete
values during testing.

Fig. 7 shows the sequence diagram for an example sce-
nario derived from the root node hazard, ‘‘Fails to generate
pulse when no heartbeat was sensed’’. This is a generic test
scenario for this product line. A generic scenario includes
all the components whose state models have been created
in the second step. Each component is represented as a sep-
arate instance line. This includes the components shared by
all the products (e.g., BaseSensor, PulseGenerator, etc.),
components that have variation models (e.g., PL_Pace-
maker), components that are variations themselves (e.g.,
ExtraSensor), and black-box components that generate
the required environmental input in a real-time fashion
(e.g., HeartSimulator and MotionSimulator).

The generic sequence diagram must also include the
external events representing messages generated from the
system border of the sequence diagram, e.g. the evStart( )
event in Fig. 7, and internal events that occur between
the internal instances of the sequence diagram, e.g., the
evPulseGeneratorOn( ) event in Fig. 7. Variations of data
associated with the events, if possible, are also specified
here. For example, in Fig. 7, ‘‘n’’ in the event ‘‘evSimulat-
eOn (SetHeartRate = n)’’ is a parameter that shows differ-
ent heart rate.

The generic test sequence diagram is then customized into
different cases by adding variations until all the combina-
tions of commonalties and variations indicated in the leaf
nodes of the PL-SFTA are covered. This customization is
most readily done hand-in-hand with the state model cus-
tomization so that if a certain variation is represented in
the sequence diagram, it is enabled in the state model as well.

4.5.2. Verify the state model
Each customized state model is now executed against its

corresponding scenarios. In this case study, we executed
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the state model of PL_Pacemaker with no variation, with
‘‘InhibitedMode’’ and ‘‘TriggeredMode’’ enabled sepa-
rately, and with the combination of ‘‘InhibitedMode’’
and ‘‘RateResponsiveMode’’ enabled. For each configura-
tion, if the state models’ execution traversed the events in
the right order as specified in their customized scenario,
then the configuration passed the test. These tests were
run for all the product-line members BasePacemaker, Rate-
ResponsivePacemaker, ModeTransitivePacemaker (with
InhibitedMode and Triggered Mode enabled separately),
and for the PL_Pacemaker (with InhibitedMode and Rate-
Responsive features combined).

The TestConductor showed that all the products passed
their tests. The criterion for passing each test was that the
execution of the model traversed the events specified in the
named scenario in the right order. Fig. 8 is an example of
the test results from validating the safety property S1 with
Inhibited Mode and RateResponsive enabled. The safety
property S1, the pacemaker fails to generate a pulse when
no heartbeat is detected during the sensing period, was val-
idated in all the tests we ran on the model.

Besides using TestConductor, potentially hazardous sce-
nario can be confirmed and further revealed by monitoring
the execution sequence generated during model animation,
and comparing it with the scenarios derived from the fault
tree. For example, the scenario that included an extra sen-
sor (V3) revealed a single-point failure that had to be cor-
rected as described in Section 5.1.2.
Fig. 8. Output from
5. Discussion of results

This section briefly discusses the benefits and limitations
of the approach described in this paper.

5.1. Applying the results to enhance safety

There are three main uses of the results to enhance the
safety of the product line in this application: finding design
errors, addressing safety-related concerns and scoping
models for formal verification.

5.1.1. Finding design errors

TestConductor identifies inconsistencies between the
design sequence diagram and the sequence diagrams gener-
ated during state model execution, e.g., messages out of
order, wrong messages or missing messages. Such inconsis-
tencies can readily be traced back to the state model that
generates the message to determine the cause. For both
required scenarios and forbidden scenarios, if the cause
of the inconsistency is not related to incorrect modeling
or limitation of the tool, the design should be updated to
remove the identified problem.

To update the design to remove any identified problems,
new product-line requirements (i.e., commonalities, vari-
abilities and/or dependencies) may need to be included into
the Commonality and Variability Analysis (CVA),
described in Section 4.1. The updating of the CVA with
TestConductor.
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new product-line requirements may then require additions/
modifications to the product line’s hazard analyses,
described in Section 4.1 to account for the new possible
hazards introduced by the new requirements. Following
this, an additional iteration of Steps 3–5, described in Sec-
tions 4.3–4.5, would be necessary to assess the safety prop-
erties of the product line given the new product-line
requirements.
5.1.2. Addressing safety-related concerns

One of the big benefits of the state-based modeling tech-
nique is that it checks if safety-related concerns rising from
the hazard analysis are really credible threats, validates any
mitigation steps and discovers discrepancies between static
hazard analysis and system behavior. For example, from
the PL-SFTA it was not found that the extra sensor (V3)
was a potential single-point failure for the safety property
S1. By disabling the extra sensor during the model execu-
tion, the scenario during model execution was compared
with the required scenario and the following inconsistency
was found: The upper scenario in Fig. 9 shows that the sens-
ing interval is required to be less than 300 ms when V3 is
present and the patient is at exercise. The lower scenario
in Fig. 9 shows the actual scenario from execution. In it,
the sensing interval is still 800 ms due to failed extra sensor.
This demonstrates that V3 is indeed a credible potential vul-
nerability that can lead to a hazard, i.e., the failure to pro-
vide a pulse when the pacemaker should generate one.

Through model execution with different combinations of
variations enabled, we investigated a possible mitigation,
which was to add a new product-line safety requirement:
if the pacemaker is currently working in Triggered or
Inhibited Mode and the sensor fails, the pacemaker should
automatically transition to Non-Sensing Mode. Since in
Fig. 9. Comparison between the required scenario
the Non-Sensing Mode a continuous pulse can be gener-
ated automatically at least until the sensor recovers, this
avoids the single-point failure.

In general, by adding a new product-line safety require-
ment, a commonality, variability and/or dependency could
be introduced into the product line’s CVA. This, again,
may require an addition/modification to the hazard analy-
ses and an additional iteration through Steps 2–5, as
described in Sections 4.2–4.5 to validate the product line’s
safety properties with the new requirements.
5.2. Limitations

Although Rhapsody’s executable state models support
real-time notions, we found that it cannot enforce exact
real-time measurement as required in some of the safety
properties in our pacemaker case study. Therefore, the
state-based modeling technique described in this work is
not suitable for testing border time values as is often
required in safety-critical, real-time systems. Rather, using
our technique and Rhapsody, validating/testing the order-
ing logic and relative timing of failure events is possible.

Due to the limitations of the scenario description lan-
guage used by the testing tool and to limitations of the test-
ing tool itself, some scenarios were not ‘‘testable’’. For
example, the timeout message (as shown in Fig. 5) and can-
celed-time out message cannot be tested by the TestCon-
ductor tool. Time intervals have to be between two
messages sent from the system border to be testable. Also,
Rhapsody supports Live Sequence Charts (Harel and Mar-
elly, 2003) while TestConductor only supports UML
sequence diagrams. By representing these non-testable sce-
narios in alternative ways (as in Section 4.4.2), some gener-
ality is lost in depicting the testing scenario. This seems to
and the actual scenario (when V3 is present).
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be an unavoidable problem at the moment but future tool
development may ease this difficulty.

5.3. Future directions

The technique described in this paper has only been
applied to a simplified product line to date. Work is under
way to investigate this approach on a large, real-world
product line. We believe that it can be extended to analyze
larger product lines because it uses PL-SFTA as a prelimin-
ary step. PL-SFTA decomposes the problem domain in a
hierarchical way to control variations and commonalities
related to certain safety properties. Modeling the variations
in the state model also allows us to analyze relatively com-
plex interactions within large product lines. In addition, the
creation of test scenarios and state models are done in a
reusable fashion to reduce the workload as the number of
system grows.

The results of our analysis provided useful information
for further verification as well. Exercising the state models
made evident which parts relate to a certain safety prop-
erty. The formal models can be derived from the state mod-
els relevant to that safety property. The scope needed for
formal verification thus can be reduced. Similarly, the tem-
poral logic properties are made more visible through the
forbidden scenario and required scenario derivation. Prob-
lems found in formal verification can also be traced back to
concrete scenarios in order to update the design using sce-
nario execution as described earlier. In future work we plan
to investigate how integrating the product line state-based
modeling approach with formal verification can reduce the
workload of formal verification.

6. Conclusion

The work described here provides guidelines for con-
structing the behavioral model of a product line’s signifi-
cant, safety-related variations in order to support
automated verification of safety properties across the prod-
uct line. Briefly, our method checks whether the variations
and the behavior they introduce jeopardize the safety prop-
erties. The contributions of the paper are to show: (1) how
to build a state-based, product-line model that can accom-
modate different types of variations and (2) how to extend
scenario-guided execution of a model to verify product-line
safety properties. By making it more practical to check var-
iable behaviors for safety consequences, this method can
enhance reuse in high-integrity product lines. In addition,
by helping to manage the complexity introduced by varia-
tions, the method supports the potential reuse of previously
performed safety analyses as new products are added to the
product line.
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