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Abstract 

 
Changes to safety-critical product lines can 

jeopardize the safety properties that they must ensure. 
Thus, evolving software product lines must consider 
the impact that changes to requirements may have on 
the existing systems and their safety. The contribution 
of this work is a systematic, tool-supported technique 
to support safe evolution of product-line requirements 
using a model-based approach. We show how the 
potential feature interactions that need to be modeled 
are scoped and identified with the aid of product-line 
software fault tree analysis. Further, we show how 
reuse of the state-based models is effectively exploited 
in the evolution phase of product-line engineering. To 
illustrate this approach, we apply our technique to the 
evolution of a safety-critical cardiac pacemaker 
product line.     
 
 
1. Introduction 
 

Changes to software requirements after deployment, 
due to system evolution, increase the difficulty of 
understanding, tracing, modeling and verifying the 
effects on system safety properties and can jeopardize 
the safety of the system [8]. Changes to the software 
requirements of a product line can greatly increase this 
difficulty because multiple systems are involved that 
may have varying safety properties and that can 
jeopardize the safety of the systems in different ways 
[6]. Safety-critical product lines, including cardiac 
pacemakers [20] [21], constellations of satellites [9] 
and medical imaging systems [28], need techniques 
and tools to accommodate and analyze the impact of 
system evolution on the product line and the product 
line’s safety properties [17]. 

A product-line is a set of systems developed by a 
single company that share a common set of core 
requirements (i.e., the product line’s commonalities) 
but differ amongst each other according to a set of 

managed variable requirements (i.e., the product line’s 
variabilities) [27]. The utilization of product-line 
engineering for software systems is advantageous in 
that it exploits the reuse potential in the analysis, 
design and development of the commonalities and 
variabilities in each product-line member [30]. Studies 
suggest that product-line engineering can reduce 
development time and cost as well as increase the 
quality of products by a factor of 10 times or more [6]. 
Product-line evolution typically involves the addition 
of new features (i.e., variabilities) or the refining of 
existing variabilities (i.e., altering the allowed 
parameters of a product-line variability) [29].    

Yet, product-line engineering still lacks the 
technical mechanisms to efficiently ensure the safety of 
each product-line system while fully taking advantage 
of its reuse potential [23]. Specifically, Kang [17] 
identifies the following as open problems for the viable 
use of product-line engineering: 

• Verifying quality attributes (e.g., safety and 
reliability) and detecting feature interactions that 
may violate the quality attributes 

• Modeling, analyzing and managing product-line 
features and feature interactions while avoiding 
the feature explosion problem 

• Accommodating the evolution of the product line 
and adapting the product-line assets to the evolved 
requirements    

The work described here addresses these problems 
in the context of the evolution and maintenance of a 
product line. Specifically, this work provides a 
structured, tool-supported decision mechanism, driven 
by the use of a product-line software fault tree analysis, 
to determine if new requirements, as a result of 
product-line evolution, can be safely integrated into the 
product line without introducing unchecked safety 
concerns. We utilize a product-line requirements 
analysis tool [25] and product-line software fault tree 
analysis tool [10] to augment and focus our state-based 
modeling of a product line on those new requirements 



and potential feature interactions that may be safety-
critical. 

The contributions of this work are a tool-supported, 
state-based, safety analysis approach for the evolution 
of a software product line, including: 

• Linking safety-critical, product-line requirements 
to their state-based model components 

• Identifying and analyzing potential safety-critical 
feature interactions 

• Modifying and reusing existing product-line state-
based models to include new requirements from 
product-line evolution 

This work is a part of a larger effort that 
investigates how safety-critical product lines evolve 
and that develops analysis techniques, tools and 
strategies to reduce the cost of safety analysis and 
enhance the safety and reusability of evolving product 
lines. The long-term goal is to provide safety analysis 
results for the new systems of a product line during 
requirements evolution in a timely and cost-efficient 
manner.  

The remainder of this paper is as follows. Section 2 
reviews related research in product-line engineering, 
state-based modeling for product lines and product-line 
safety analysis. Section 3 gives an overview of our 
approach to accommodate the safety analysis of 
evolving software product lines using state-based 
modeling. Section 4 details our technique using the 
evolution of a pacemaker as our safety-critical case 
study. Section 5 provides a brief discussion of our 
technique and our experience in its application. 
Finally, Section 6 provides some concluding remarks.    
 
2. Background & Related Work 
 

This work builds upon previous work integrating 
product-line engineering, state-based modeling and 
software safety analysis. Compared to our previous 
work in this field [20] [21], this work demonstrates 
how the safety analysis of a product line using a state-
based modeling approach can accommodate product-
line evolution.   
 
2.1. Software Product-Line Engineering 

 
The ability to reuse software engineering assets 

during system development continues to be of vital 
interest to industry as it offers the possibility to 
significantly decrease both the time and cost of 
software requirements specification, development, 
maintenance and evolution [27]. In product-line 
engineering, the common, managed set of features 
shared by all members, the commonalities, are reused 
for all members of the product line. For example, a 

commonality for a pacemaker is “A pacemaker’s 
pacing cycle length shall be the sum of the senseTime 
and the refractoryTime”.  

The variabilities of a product line differentiate the 
product-line members and may have a design, 
configuration, delivery or run-time binding with the 
product-line member [20] [21]. For example, a run-
time binding pacemaker variability is “The senseTime 
of a pacemaker’s pacing cycle may vary at run-time by 
setting the senseTime from 800 msec to 300 msec”.  

Product-line dependencies restrict which 
combinations of variability subsets can form viable 
product line members. Dependencies may enforce 
safety requirements by preventing or restricting some 
feature interactions. For example, a pacemaker 
dependency is “A modeTransitive type pacemaker must 
only use a 800 msec senseTime when it is operating in 
a Inhibited pacing mode”.  

Product-line engineering is typically partitioned into 
two phases:  domain engineering and application 
engineering [30]. A product line is initially defined by 
its commonalities and variabilities in the domain 
engineering phase. The benefits of product-line 
engineering come in the application engineering phase 
when the reusable assets defined in the domain 
engineering phase are exploited to create product-line 
members. Product-line evolution typically involves the 
addition of new features (i.e., variabilities) or the 
refining of existing variabilities (i.e., altering the 
allowed parameters of a product-line variability) [29]. 
For instance, a requirement evolution for the 
pacemaker variability given above may expand 
allowable senseTime pacing cycle to also include some 
value between 800 msec and 300 msec, e.g., 500 msec.   
 
2.2. Model-Based Software Development 

 
State-based modeling has previously been used as a 

mechanism to detect the correctness of the 
requirements and design as well as to aid in the 
verification of behavioral requirements [1], [7]. Harel 
and Marelly, like us, have used a scenario-guided 
approach to testing state-based models as a way to 
identify missing requirements [16]. However, their 
work concentrates on validating the safe behavior of 
single systems, whereas the work described here aims 
at validating the safe behavior of the multiple systems 
within a product line.  

Software product lines have been modeled in 
various ways using extensions of UML to aid in the 
reuse of UML assets. For example, Clauss extends 
UML to support features diagrams as well as extending 
the package diagram to incorporate variabilities 
descriptions [5]; Doerr classifies the relationships 
within a variation model and relates them to UML 



notation [12]; Gomaa uses executable UML statecharts 
to as a product-line model [15]; and Prehofer uses 
state-model composition to evaluate the interaction of 
features [26]. The work described in this paper also 
uses executable UML but focuses on providing 
assurance to the satisfaction of the safety properties of 
the product line as well as examining the potentially 
unsafe feature interactions.   

More recently, Deng, Lenz and Schmidt have 
demonstrated a model-transformation approach using 
the Domain Specific Modeling Language to address 
the changes in a product line’s architecture as a result 
of domain evolution [11]. Our work concentrates on 
the impact of software evolution on the safety of the 
system, rather than on the architectural impact.        
 
2.3. Software Safety Analysis 

 
Safety analysis for software product lines is still 

immature. Safety analysis approaches have been 
proposed to verify safety properties and discover 
missing safety requirements for the multiple systems of 
a product line. Feng and Lutz [14] propose a bi-
directional approach that uses a forward search to 
discover the effects of a hazard coupled with a 
backward search from faults to their contributing 
causes to verify and discover safety requirements. Lu 
and Lutz propose a failure contribution analysis for 
product lines to help the analysis of the contributions 
of commonality and variability trees to root node 
hazards [22]. Yet, these two approaches rely on a static 
analysis of the product-line requirements rather than 
the executable analysis done in this work.  

This work utilizes two tool-supported product-line 
safety analysis methods to support the creation of state-
based models and to analyze the evolution and feature 
interactions of product-line requirements.  

DECIMAL is a product-line requirements analysis 
tool that documents the commonalities, variabilities 
and dependencies of a product line during the domain 
engineering phase [25]. During the application 
engineering phase, DECIMAL verifies that the 
selection of variabilities for a product-line member do 
not violate the product line’s prescribed dependencies.  

PLFaultCAT is a tool that aids the construction and 
analysis of product-line software fault tree analyses 
(SFTA) [10]. A SFTA is a widely used backward 
safety analysis technique designed to trace the causal 
events of a specified hazard down to the basic faults of 
a single system [18]. PLFaultCAT allows engineers to 
construct the product-line SFTA and associate the 
commonalities and variabilities, from DECIMAL, with 
the leaf nodes of the SFTA in the domain engineering 
phase. During application engineering, PLFaultCAT 

semi-automatically produces the product-line 
members’ SFTAs from the product-line SFTA.      

The work reported here, as in our previous work 
[20] [21], uses executable UML within the Rhapsody 
software modeling environment as well as the 
TestConductor tool by I-Logix [24].  

 
3. Approach 
 

This section describes the construction of the safety 
analysis of an evolving software product line using 
state-based modeling. It focuses on how to identify, 
model and analyze potentially unsafe feature 
interactions.  

 
3.1. Safety Analysis of Evolving Software 
Product Lines Using State-Based Modeling  
 
 We here provide a step-by-step overview of our 
technique for safety analysis of software product lines 
using state-based modeling for a product line during 
evolution.  
 
3.1.1. Commonality and Variability Analysis. The 
Commonality and Variability Analysis (CVA) 
documents the product line’s requirements [30]. 
During evolution, new feature requirements (i.e., 
variabilities) are added to the CVA, possibly using a 
product-line requirements analysis tool, such as 
DECIMAL [25], as done here.   
 
3.1.2. Product-Line Software Fault Tree Analysis 
(SFTA). A product-line SFTA will need to 
accommodate the new features if they can potentially 
contribute to causing one of the failures described in 
the SFTAs. The new features may require the 
modification of the product-line SFTA by adding 
entirely new fault trees as a result of the possibility of 
new root node hazards occurring. This requires the 
construction of a product-line SFTA just as done 
during the initial development of a product line [10].  
 Additionally, new features introduced during 
product-line evolution may need to be included in 
existing product-line SFTAs. To accomplish this, each 
existing fault tree is analyzed to see how the new 
feature(s) can contribute to cause the root node 
hazards. This may entail adding subtrees to the existing 
fault trees or associating the requirements of the new 
feature with the leaf nodes of the fault tree. Here we 
use the SFTA tool PLFaultCAT [10], to achieve this.       
 
3.1.3. Variation model generation. We map the leaf 
nodes of the product-line SFTA to architectural 
components and then model the behavior of the 



architectural component in a state model. During the 
initial development of a product line, the state-chart 
model is incrementally built from the product that has 
the fewest variable features until all features are 
included into the state model [20] [21].  
 To address product-line evolution, any new features 
are incrementally integrated into the state model. To 
achieve this, any newly created SFTAs, a result of Step 
2, will need to map the SFTA’s leaf nodes to a new or 
existing architectural component. If they are mapped to 
an existing component, that component’s behavior 
must be modified to include the new behavior 
introduced by the new feature(s). If they are mapped to 
a new architectural component, that new component’s 
behavior should then be modeled and integrated into 
the product-line state model. For the existing product-
line SFTAs that were modified to accommodate the 
new features, we need to include the new behaviors 
into the architectural components representation in the 
state model.   
 
3.1.4. Scenario derivation. Using the product-line 
SFTA, we derive required scenarios (i.e., those 
scenarios that enforce a safety property) and forbidden 
scenarios (i.e., those scenarios that emulate a hazard). 
For the newly created product-line SFTAs, the process 
described in [20] [21] suffices. For the existing 
product-line SFTAs that were modified as a result of 
the new features, the scenarios that were developed 
during the initial product line’s construction must be 
altered to accommodate the behavior described in the 
new subtrees of the SFTAs. This will result in 
modified testable scenarios that need to be re-executed 
in Step 5 since the behavior they display as a result of 
evolution may differ from when they were executed 
and verified during the product line’s initial 
development.       
 
3.1.5. Scenario-guided model analysis. The 
developed scenarios, from Step 4, are exercised against 
the state model, from Step 3. Although the introduction 
of the new feature as a result of evolution may not have 
altered all the testable scenarios from the initial 
development, all scenarios should be exercised against 
the model to ensure that the inclusion of new features’ 
behavior into the model does not produce 
undesired/unknown effects (i.e., a regression testing 
approach). This step then follows [20] [21]: a failure in 
the execution of the required scenarios indicates 
inconsistencies between the model execution and the 
specified scenario; a forbidden scenarios execution will 
indicate a need to update the design if it is found to 
allow illegal/hazardous behavior. In each case, an 
update to the design is warranted if undesired behavior 
is detected when executing the scenarios in the state 

model. In this work, we used TestConductor to 
exercise the model in the Rhapsody modeling 
environment [24].    
 
3.2. Identifying and Modeling Safety-Critical 
Feature Interactions   
 
 The evolution of a software product line is more 
complex than for single software systems since new, 
possibly conflicting, features from the existing 
products in the product line and the newly introduced 
features for the new products can result in 
unsafe/undesirable feature interactions [29]. For 
example, the 1996 explosion of the initial flight of the 
Ariane 5 rocket was partially blamed on the interaction 
of the new features introduced in the Ariane 5 with the 
features retained from the earlier, Ariane 4, rocket [19]. 
Thus, it is crucial to ensure that product-line evolution 
does not introduce feature interactions that 
compromise the safety properties that the product line 
previously ensured. 
 To address this, our approach focuses on the 
identification and modeling of safety-critical feature 
interactions to determine whether they may cause a 
hazard. In the case that the feature interactions could 
cause a hazard, we explore in simulation the effects of 
possible alternatives in the model to prevent such an 
unsafe feature interaction. The identification and 
analysis of new safety-critical feature interactions in 
the product line introduced as a result of the inclusion 
of a new feature(s) during evolution consists of the 
steps described below. 
 
3.2.1. Identification of safety-critical feature 
interactions. A product-line software fault tree 
analysis (SFTA) associates a product line’s 
requirements (i.e., commonalities and variabilities) 
with the leaf node failure events that may lead to the 
occurrence of the root node hazard. As described in 
Section 3.1, Step 2 as well as in [10], the evolution of a 
product line will associate new product-line 
requirements with the leaf nodes of existing SFTAs 
along with former requirements.  
 After the adaptation of the product-line SFTAs to 
the new features introduced as a result of evolution, the 
safety-critical feature interactions can be identified by 
searching for those product-line requirements that 
frequently contribute to the possible causes of the fault 
tree’s failure nodes. PLFaultCAT [10], the product-line 
SFTA tool used here, can automatically identify those 
product-line requirements and combination of product-
line variabilities (i.e., features) that contribute to the 
most potential failures as defined in the SFTA.  



 This analysis provides a prioritized list of those 
product-line requirements and feature interactions that 
warrant further scrutiny using an executable state-
based model. That is, those product-line requirements 
and feature interactions that are deemed to contribute 
to the most fault tree failure nodes are more likely to 
have unsafe interactions with existing product-line 
requirements and should have their behaviors modeled 
in order to determine the safe/unsafe behaviors using a 
dynamic analysis.       

 
3.2.2. State-based modeling of feature interactions 
to determine safe/unsafe behavior. We here describe 
our approach using executable state models and 
scenarios. To determine the safety of feature 
interactions using our state-based model, we first take 
a manageable sub-tree of the product-line SFTA. The 
variabilities in the cut-set of such a fault tree can be 
used to map to components in the architecture diagram 
of the product line. If there are new features introduced 
into the product line, we need to update the 
architecture design if such a new feature will introduce 
new components or new associations between 
components. 
 Next, we take the state models of those components 
where the safety related variabilities reside. For newly 
introduced features, it is likely that the existing state 
models will be updated, or new state models will be 
created. We then derive the events that are identified as 
potentially causing hazards and their direct 
consequences from SFTA. The causative events and 
their consequences, represented as message passing 
between involved components, form required or 
forbidden scenarios to analyze in the following steps.  
 Next, we execute the models and inspecting the 
execution sequences either manually or automatically, 
with the scenarios previously identified as guidance. 
The manual inspection includes monitoring the 
message-passing sequence diagram among the 
components that are identified in the derived scenarios, 
pausing at points of importance, and selectively 
investigating details in the animated statechart view of 
a specific component when necessary. Manual 
inspection also includes injecting events at run-time to 
test the response of the system under different 
environmental inputs.  
 The automatic inspection involves using a scenario-
based state model testing tool, such as TestConductor, 
that captures requirements regarding absolute or partial 
ordering of messages as sequence diagrams, and 
testing the sequence diagram against the actual order of 
message-passing during the state model execution. 
Such tests can be automatically executed for improved 
inspection.  

 The manual inspection is more flexible and more 
informative for requirements that cannot be easily 
modeled by sequence diagrams due to the nature of the 
requirements or limits of the tool [20] [21], while the 
automatic inspection is more thorough, providing more 
assurance regarding a testable scenario. The outcome 
gives users information regarding whether a forbidden 
scenario is likely to happen and how it may happen, or 
whether a required scenario can sometimes not happen. 
This is because the execution will give the actual 
execution scenarios providing details confirming or 
contradicting the scenarios derived. Note that this 
scenario-guided inspection of model execution gives 
no guarantee as to whether a required scenario is 
always going to happen or a forbidden scenario is 
never going to happen – that requires the more 
rigorous reasoning provided by formal methods [4].  
 After inspection, we need to find mechanisms to 
avoid forbidden scenarios from happening or enforcing 
required scenarios, using the detailed results from the 
previous step as guidance. Such mechanisms, once 
implemented in the state model, will again be 
inspected during execution, as described above, to 
decide if they do achieve their goals. Once confirmed, 
these mechanisms can be used to suggest new 
requirements update. 
 While a new feature is likely to update an existing 
SFTA or even introduce a new SFTA, previous SFTA-
related state models may be re-validated (by running 
through the process described above) to ensure that the 
new feature does not interfere with them. Such a re-
validation process can be done by adding the new 
feature related component into the scenario to check if 
there is any potential interaction between this 
component and the components residing in the original 
sequence diagram. 
  
4. Application to the Evolution of a 
Product-Line Pacemaker 
 
 This section applies the approach described in 
Section 3 to a safety-critical, product-line cardiac 
pacemaker.  
 

 
Figure 1. Product-Line Architecture after Evolution  
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4.1. Description and Evolution  
 

To illustrate our approach, we build upon the 
pacemaker product line described in [20] [21]. A 
pacemaker is an embedded medical device designed to 
monitor and regulate the beating of the heart when it is 
not beating at a normal rate. It consists of a monitoring 
device embedded in the chest area as well as a set of 
pacing leads (wires) from the monitoring device into 
the chambers of the heart [13]. In our simplified 
example, the monitoring device has three basic 
components: a sensing component (sensor) that senses 
heart beat, a stimulation component (pulse generator) 
that generates pulses to the heart, and a controlling 
component (controller) that configures different pacing 
and sensing algorithms and issues commands. Here, 
we only consider a single-chambered product line of 
pacemakers that does pacing and sensing in the heart's 
ventricles. 

Our simplified pacemaker product line consists of 
the following products and features: 
• BasePacemaker – This product has the basic 

functionality shared by all pacemakers: generating a 
pulse whenever no heart beat is sensed during the 
sensing interval. 

• ModeTransitivePacemaker – This product can 
switch between InhibitedMode and TriggeredMode 
during runtime. In the InhibitedMode, the 
pacemaker acts exactly like a BasePacemaker. In 
the TriggeredMode, a pulse follows every heartbeat 
to provide a different type of therapy. 

• RateResponsivePacemaker – This product acts 
similarly to the BasePacemaker but contains an 
extra sensor allowing it to adjust its sensing interval 
according to the patient’s current activity level: 

LRLrate, for a patient’s normal activities and URL 
rate, for when a patient is exercising. 

• ModeTransitive-RateResponsivePacemaker - 
This product combines the features of the 
ModeTransitivePackemaker and the 
RateResponsivePacemaker.  
The evolution of the pacemaker product line that 

we consider here involves the addition of an 
EventRecorder component, shown in Fig. 1, to log 
critical events in the major components of a pacemaker 
and is used for making therapy decisions. For instance, 
EventRecorder calculates the number of heart beats 
sensed by BaseSensor during a fixed recording interval 
and compares that value with some threshold value to 
decide if the pacemaker should switch between 
InhibitedMode and TriggeredMode during run-time. 
Different pacemakers can log different events at 
different times, as shown in Table 1. 
 The addition of the EventRecorder feature was 
included into the product line’s requirements using 
DECIMAL [25].  
 Due to the cross-cutting nature of the 
EventRecording feature, the risk of unsafe feature 
interaction is higher. For example, when the average 
number of heart beats in a 6000 msec recording 
interval exceeds a 24-beat threshold, the 
EventRecorder shall consider that the patient’s heart is 
fibrillating, so it will command the 
PacemakerController to switch from InhibitedMode to 
TriggeredMode to defibrillate it. It must be ensured 
that the features added to PacemakerController due to 
the introduction of EventRecorder interact with the 
existing features in PacemakerController in a 
predictable manner and that there are no unexpected 
and/or unsafe feature interactions. 

 
 

Table 1. Event Recording Feature’s Commonality and Variability
Product 
Name Component Name Events to Log 

Base Sensor Average heart rate sensed every fixed recording interval Base 
Pacemaker Pulse Generator The pulse width of every pulse being made 

Base Sensor Average heart rate sensed every fixed recording interval Mode 
Transitive 
Pacemaker Pulse Generator 1) In the Triggered mode, the average number of pulses generated every fixed recording interval 

2) In the Inhibited mode, the pulse width of every pulse being generated 

Base Sensor Average heart rate sensed every fixed recording interval 

Pulse Generator The pulse width of every pulse being made 
Rate 

Responsive 
Pacemaker 

Extra Sensor The percentage of the pacemaker sensing at LRLrate every fixed recording interval 



 
Figure 2. Excerpt of Pacemaker Product-Line SFTA in 

PLFaultCAT after Evolution 
 
4.2. Product-Line SFTA Evolution 
 
 The inclusion of the EventRecorder feature into the 
pacemaker product line required both the updating of 
existing product-line software fault tree analyses 
(SFTA) and the creation of new product-line SFTAs to 
accommodate the new failure modes that the new 
feature brings to the product line. For example, 
because of the new behavior introduced by the 
EventRecorder feature, a product-line SFTA with a 
root node of “Failure to switch modes”, shown in Fig. 
2, had to be added. The creation of the new product-
line SFTA with a root node of “Failure to switch 
modes” required the association of the requirements of 
the new EventRecorder feature as well as those 
features from existing product-line products. For 
example, as illustrated in Fig. 3, the ModeTransitive 
feature (found in the ModeTransitivePacemaker and 
the ModeTransitive-RateResponsivePacemaker 
products) may interact with the EventRecorder feature 
to cause a hazard. Yet, from examining the SFTA, it is 
not entirely clear how these two features can interact to 
cause such hazards, thus the need for further analysis.  
 Using PLFaultCAT, we can analyze the set of 
product-line SFTAs to find other such combinations of 
features that may cause hazards to direct the safety 
analysis, described in Section 4.3, to those feature 
interactions, like shown in Fig. 3, which may need to 
be further scrutinized.          

 
Figure 3. Excerpt of Product-Line SFTA Illustrating 

Potential Feature Interactions 
 
4.3. State-Based Modeling of Safety-Critical 
Feature Interactions and Derivation of New 
Safety Requirements 
 
 This section illustrates the steps involved in using 
the state-based modeling approach to promote safe 
evolution of a product line. It uses the example of an 
EventRecording feature introduced as an existing 
pacemaker product line evolved. 
 The new EventRecording feature has introduced a 
possible hazard, “failure to be in the TriggeredMode 
when the heart beats too fast”, shown in Fig. 3. The 
subtree shown here concretizes this high-level hazard 
by adding events (e.g., the mode switch event sent 
from the operator and the mode switch event sent from 
the EventRecorder), conditions (e.g., the heart beats 
too fast), and the consequences (both safe and unsafe, 
e.g., required scenario: remains in TriggeredMode; 
forbidden scenario: fails to remain in TriggeredMode). 
The refinement of the hazard node in this way forms 
the scenario to check against the state models.  
 For the subtree in Fig. 3, we model the components 
that implement the leaf node requirements. For 
example, the ModeTransitive feature is implemented 
by the PacemakerController component, the 
MotionSimulator component, and the ExtraSensor 
component.  
 After the state models are generated, we instantiate 
the scenario captured in the subtree by mapping the 
events, conditions, and consequences to model-level 
elements. For example, the mode switch event sent 
from the operator is mapped to the 
“evInhibitedMode()” message,  and the mode switch 
event sent from the EventRecorder is mapped to the 
“evTriggeredMode()” message, while the “heart beats 
too fast” condition is represented by a concrete 
threshold for the heart beats (16 beats while in



 
Figure 4. Excerpt of Pacemaker Animated Sequence Diagram 

 
LRLrate, and 24 beats while in URLrate). The safe and 
unsafe consequences are mapped to 
PacemakerController component being in the 
TriggeredMode state and the InhibitedMode state, 
respectively. 
 Note that simple state models of other components, 
even if they do not directly implement the leaf node 
requirements, such as the PulseGenerator component, 
can also be generated if their responses in the 
execution help illustrate the above scenarios more 
clearly. 
 The next step animates the generated state models 
using Rhapsody. The animation process, as explained 
in Section 3.2, is mainly composed of animated 
sequence diagrams illustrating message passing during 
model execution, and animated state charts illustrating 
states and transitions taken at run time. 
 Fig. 4 shows a portion of the animated sequence 
diagram. It is a point where the fixed recording interval 
has expired (as shown by the “tm(6000)” message), 
Since the recorded number of heart beats is 20 (greater 
than the 16 threshold, indicating that the heart is 
beating too fast), the EventRecorder commands 
PacemakerController to switch mode from 
InhibitedMode to TriggeredMode. However, if we then 
inject an evInhibitedMode() event to 
PacemakerController, it will switch back to Inhibited 
mode, as shown in the animated statechart in Fig. 5 
(the current states are highlighted), despite the fact that 
the heart is still beating too fast. 
 The animation shows that the scenario we captured 
in the fault tree, Fig. 3, and instantiated in the model 
level can actually happen. It also shows how this 
unsafe scenario can happen: when the two events 
(evInhibitedMode() and evTriggeredMode()) occur in a 
certain order (evTriggeredMode() first and 
evInhibitedMode()) second). As we discuss below, it is 
these sorts of ordering and timing issues that the 
executable state model, unlike the fault tree, can reveal. 
 Since the animation is done with the executable 
models, it also provides concrete insights into how to 
mitigate this potentially hazardous scenario, namely by 
adding a mechanism that locks the 

PacemakerController in Triggered mode when the 
heart beats too fast. The benefit of model-level analysis 
is that the new mechanism can be tested right away to 
see if it conforms to the safe scenario.  
 Another benefit is that we can readily investigate 
several mechanisms in order to select the more reliable 
and easy-to-implement one. For example, there are at 
least two ways that we can implement the mitigation 
mechanism. One option is to name the mode-switch 
messages sent from the EventRecorder and the 
Programmer differently and to give the 
EventRecorder’s message higher priority than the 
Programmer’s. Another option is to set up an internal 
variable in the PacemakerController that records the 
heart’s status as beating too fast or not. Such a variable 
is used for guarded transitions from the 
TriggeredMode state to the InhibitedMode state and 
can only be changed when the EventRecorder detects a 
heartbeat.  
 While both mechanisms prevent the unsafe scenario 
from happening, the first one is more restrictive in that 
it grants the EventRecorder priority on messages 
switching both into, and out of, TriggeredMode The 
second one just enforces the EventRecorder’s priority 
in switching out of TriggeredMode. However, the 
second alternative allows the possibility of the 
Programmer and the EventRecorder racing to switch 
into TriggeredMode. If the second alternative is 
selected, this suggests that we may want to introduce 
additional requirements to handle this possible race 
condition. 
 
5. Discussion 
 
 This work utilized a product-line software fault tree 
analysis (SFTA) and state-based modeling of critical 
components to identify potentially unsafe feature 
interactions [5]. This approach provides some 
advantages over the use of feature diagrams. Feature 
diagrams can document identified interactions but fail 
to indicate the feature interactions that are safety- 
critical. The product-line SFTA, however, aids us in 
identifying those feature interactions that can cause



Figure 5. Animated PacemakerController Statechart in the Evolved Product-Line State Model 
 

top-level failure events (i.e., those feature interactions 
that are safety-critical). We found that using the 
product-line SFTA greatly reduced the number of 
feature interactions that had to be investigated. 
Focusing on critical interactions makes our approach 
more amenable to use in an industrial setting.  
 The use of a state-based modeling approach for 
safety analysis during evolution is advantageous 
because it can both build on and extend the product-
line fault tree analysis. Unlike SFTA, an executable 
state-based model can analyze and model the 
timing/ordering of failure events to determine their 
possible safety implications. In addition, we found that 
because the SFTA is a static asset, it lacks the ability to 
animate and explicitly show how a safety property may 
be violated. The use of an executable state-based 
model, however, allows the simulation of the behaviors 
described by the requirements in the fault tree to 
illustrate the violation of a safety property.  
 We found that although Rhapsody’s executable 
state-based models support real-time notions, as 
required in our pacemaker case study, it cannot enforce 
exact real-time measurement. Thus, the state-based 
modeling technique described here is not suitable for 
testing border time values; rather, it can handle testing 
the ordering logic and relative timing of failure events.  
 The exploration of alternative new software 
behaviors in the state-based model to prevent or 
mitigate the violation of a safety property allows 
immediate feedback on whether proposed, new safety 
requirements will indeed guard against the violation of 
the safety property. Moreover, the executable state-
based model, unlike a SFTA, can explore multiple 
solutions to come up with a reliable and easy-to-
implement mitigation strategy. This then drives the 
updating of the product line’s requirements to include 
the new safety requirements. Such feedback is 
impossible to ensure using the SFTA alone. Thus, the 
inclusion of a state-based modeling safety analysis 

approach, as described here, may improve the safety 
case that a safety-critical product line must make when 
requiring certification from an outside governing body.    
 Reuse of the product-line SFTA as well as of the 
product-line state-based models constructed during the 
initial development of the product line, occurred during 
system evolution in this work. Although, some updates 
were required to accommodate the new features 
introduced, large parts of the previously developed 
safety analysis assets could be reused.  
 The use of DECIMAL [25], the product-line 
requirements documentation and analysis tool, coupled 
with the use of PLFaultCAT [10], the product-line 
SFTA tool, improved the traceability of the 
requirements to the components of the state-based 
models. The leaf nodes of the fault trees constructed in 
PLFaultCAT are associated with the commonalities 
and variabilities of the product line, and the state-based 
models are derived using information from the SFTA. 
Additionally, the use of PLFaultCAT to identify those 
feature interactions that may be safety-critical, and 
therefore should be analyzed using state-based models, 
helps maintain the traceability of requirements to the 
state-based safety analysis as the product line evolves.   
 
6. Conclusion 
 

Product-line engineering presents an advantageous 
approach to developing software systems because the 
reuse can reduce the development time and cost. Yet, 
handling product-line evolution is more complex than 
in traditional software systems because changes to the 
software requirements may affect or even compromise 
the various safety properties of multiple products. In 
particular, the analysis of feature interactions is 
important because, during evolution, the new features 
introduced into a product line may have unknown and 
unsafe interactions with the existing features. 



This paper illustrated an approach, built on our 
previous work with stable product lines, to performing 
a safety analysis on an evolving product line using a 
product-line software fault tree analysis to direct state-
based modeling. The paper detailed and demonstrated 
a tool-supported technique to: 1. link product-line 
requirements to their state-based model components; 2. 
identify and analyze safety-critical feature interactions; 
and 3. modify and reuse product-line state-based 
models to analyze the new features added as a result of 
evolution. This technique utilized a product-line 
software fault tree analysis to avoid and manage the 
complexity of feature interactions.  

Future work includes refining our technique and 
developing further tool-support to provide further 
guidance in the application of this technique.        
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