
State-Based Modeling to Support the Evolution and Maintenance of Safety-
Critical Software Product Lines

Jing Liu1, Josh Dehlinger1, Hongyu Sun1 and Robyn Lutz1, 2
1Department of Computer Science, Iowa State University

2Jet Propulsion Laboratory/Caltech
{janetlj, dehlinge, sun, rlutz}@cs.iastate.edu

Abstract

Changes to safety-critical product lines can

jeopardize the safety properties that they must ensure.
Thus, evolving software product lines must consider
the impact that changes to requirements may have on
the existing systems and their safety. The contribution
of this work is a systematic, tool-supported technique
to support safe evolution of product-line requirements
using a model-based approach. We show how the
potential feature interactions that need to be modeled
are scoped and identified with the aid of product-line
software fault tree analysis. Further, we show how
reuse of the state-based models is effectively exploited
in the evolution phase of product-line engineering. To
illustrate this approach, we apply our technique to the
evolution of a safety-critical cardiac pacemaker
product line.

1. Introduction

Changes to software requirements after deployment,
due to system evolution, increase the difficulty of
understanding, tracing, modeling and verifying the
effects on system safety properties and can jeopardize
the safety of the system [8]. Changes to the software
requirements of a product line can greatly increase this
difficulty because multiple systems are involved that
may have varying safety properties and that can
jeopardize the safety of the systems in different ways
[6]. Safety-critical product lines, including cardiac
pacemakers [20] [21], constellations of satellites [9]
and medical imaging systems [28], need techniques
and tools to accommodate and analyze the impact of
system evolution on the product line and the product
line’s safety properties [17].

A product-line is a set of systems developed by a
single company that share a common set of core
requirements (i.e., the product line’s commonalities)
but differ amongst each other according to a set of

managed variable requirements (i.e., the product line’s
variabilities) [27]. The utilization of product-line
engineering for software systems is advantageous in
that it exploits the reuse potential in the analysis,
design and development of the commonalities and
variabilities in each product-line member [30]. Studies
suggest that product-line engineering can reduce
development time and cost as well as increase the
quality of products by a factor of 10 times or more [6].
Product-line evolution typically involves the addition
of new features (i.e., variabilities) or the refining of
existing variabilities (i.e., altering the allowed
parameters of a product-line variability) [29].

Yet, product-line engineering still lacks the
technical mechanisms to efficiently ensure the safety of
each product-line system while fully taking advantage
of its reuse potential [23]. Specifically, Kang [17]
identifies the following as open problems for the viable
use of product-line engineering:

• Verifying quality attributes (e.g., safety and
reliability) and detecting feature interactions that
may violate the quality attributes

• Modeling, analyzing and managing product-line
features and feature interactions while avoiding
the feature explosion problem

• Accommodating the evolution of the product line
and adapting the product-line assets to the evolved
requirements

The work described here addresses these problems
in the context of the evolution and maintenance of a
product line. Specifically, this work provides a
structured, tool-supported decision mechanism, driven
by the use of a product-line software fault tree analysis,
to determine if new requirements, as a result of
product-line evolution, can be safely integrated into the
product line without introducing unchecked safety
concerns. We utilize a product-line requirements
analysis tool [25] and product-line software fault tree
analysis tool [10] to augment and focus our state-based
modeling of a product line on those new requirements

and potential feature interactions that may be safety-
critical.

The contributions of this work are a tool-supported,
state-based, safety analysis approach for the evolution
of a software product line, including:

• Linking safety-critical, product-line requirements
to their state-based model components

• Identifying and analyzing potential safety-critical
feature interactions

• Modifying and reusing existing product-line state-
based models to include new requirements from
product-line evolution

This work is a part of a larger effort that
investigates how safety-critical product lines evolve
and that develops analysis techniques, tools and
strategies to reduce the cost of safety analysis and
enhance the safety and reusability of evolving product
lines. The long-term goal is to provide safety analysis
results for the new systems of a product line during
requirements evolution in a timely and cost-efficient
manner.

The remainder of this paper is as follows. Section 2
reviews related research in product-line engineering,
state-based modeling for product lines and product-line
safety analysis. Section 3 gives an overview of our
approach to accommodate the safety analysis of
evolving software product lines using state-based
modeling. Section 4 details our technique using the
evolution of a pacemaker as our safety-critical case
study. Section 5 provides a brief discussion of our
technique and our experience in its application.
Finally, Section 6 provides some concluding remarks.

2. Background & Related Work

This work builds upon previous work integrating
product-line engineering, state-based modeling and
software safety analysis. Compared to our previous
work in this field [20] [21], this work demonstrates
how the safety analysis of a product line using a state-
based modeling approach can accommodate product-
line evolution.

2.1. Software Product-Line Engineering

The ability to reuse software engineering assets

during system development continues to be of vital
interest to industry as it offers the possibility to
significantly decrease both the time and cost of
software requirements specification, development,
maintenance and evolution [27]. In product-line
engineering, the common, managed set of features
shared by all members, the commonalities, are reused
for all members of the product line. For example, a

commonality for a pacemaker is “A pacemaker’s
pacing cycle length shall be the sum of the senseTime
and the refractoryTime”.

The variabilities of a product line differentiate the
product-line members and may have a design,
configuration, delivery or run-time binding with the
product-line member [20] [21]. For example, a run-
time binding pacemaker variability is “The senseTime
of a pacemaker’s pacing cycle may vary at run-time by
setting the senseTime from 800 msec to 300 msec”.

Product-line dependencies restrict which
combinations of variability subsets can form viable
product line members. Dependencies may enforce
safety requirements by preventing or restricting some
feature interactions. For example, a pacemaker
dependency is “A modeTransitive type pacemaker must
only use a 800 msec senseTime when it is operating in
a Inhibited pacing mode”.

Product-line engineering is typically partitioned into
two phases: domain engineering and application
engineering [30]. A product line is initially defined by
its commonalities and variabilities in the domain
engineering phase. The benefits of product-line
engineering come in the application engineering phase
when the reusable assets defined in the domain
engineering phase are exploited to create product-line
members. Product-line evolution typically involves the
addition of new features (i.e., variabilities) or the
refining of existing variabilities (i.e., altering the
allowed parameters of a product-line variability) [29].
For instance, a requirement evolution for the
pacemaker variability given above may expand
allowable senseTime pacing cycle to also include some
value between 800 msec and 300 msec, e.g., 500 msec.

2.2. Model-Based Software Development

State-based modeling has previously been used as a

mechanism to detect the correctness of the
requirements and design as well as to aid in the
verification of behavioral requirements [1], [7]. Harel
and Marelly, like us, have used a scenario-guided
approach to testing state-based models as a way to
identify missing requirements [16]. However, their
work concentrates on validating the safe behavior of
single systems, whereas the work described here aims
at validating the safe behavior of the multiple systems
within a product line.

Software product lines have been modeled in
various ways using extensions of UML to aid in the
reuse of UML assets. For example, Clauss extends
UML to support features diagrams as well as extending
the package diagram to incorporate variabilities
descriptions [5]; Doerr classifies the relationships
within a variation model and relates them to UML

notation [12]; Gomaa uses executable UML statecharts
to as a product-line model [15]; and Prehofer uses
state-model composition to evaluate the interaction of
features [26]. The work described in this paper also
uses executable UML but focuses on providing
assurance to the satisfaction of the safety properties of
the product line as well as examining the potentially
unsafe feature interactions.

More recently, Deng, Lenz and Schmidt have
demonstrated a model-transformation approach using
the Domain Specific Modeling Language to address
the changes in a product line’s architecture as a result
of domain evolution [11]. Our work concentrates on
the impact of software evolution on the safety of the
system, rather than on the architectural impact.

2.3. Software Safety Analysis

Safety analysis for software product lines is still

immature. Safety analysis approaches have been
proposed to verify safety properties and discover
missing safety requirements for the multiple systems of
a product line. Feng and Lutz [14] propose a bi-
directional approach that uses a forward search to
discover the effects of a hazard coupled with a
backward search from faults to their contributing
causes to verify and discover safety requirements. Lu
and Lutz propose a failure contribution analysis for
product lines to help the analysis of the contributions
of commonality and variability trees to root node
hazards [22]. Yet, these two approaches rely on a static
analysis of the product-line requirements rather than
the executable analysis done in this work.

This work utilizes two tool-supported product-line
safety analysis methods to support the creation of state-
based models and to analyze the evolution and feature
interactions of product-line requirements.

DECIMAL is a product-line requirements analysis
tool that documents the commonalities, variabilities
and dependencies of a product line during the domain
engineering phase [25]. During the application
engineering phase, DECIMAL verifies that the
selection of variabilities for a product-line member do
not violate the product line’s prescribed dependencies.

PLFaultCAT is a tool that aids the construction and
analysis of product-line software fault tree analyses
(SFTA) [10]. A SFTA is a widely used backward
safety analysis technique designed to trace the causal
events of a specified hazard down to the basic faults of
a single system [18]. PLFaultCAT allows engineers to
construct the product-line SFTA and associate the
commonalities and variabilities, from DECIMAL, with
the leaf nodes of the SFTA in the domain engineering
phase. During application engineering, PLFaultCAT

semi-automatically produces the product-line
members’ SFTAs from the product-line SFTA.

The work reported here, as in our previous work
[20] [21], uses executable UML within the Rhapsody
software modeling environment as well as the
TestConductor tool by I-Logix [24].

3. Approach

This section describes the construction of the safety
analysis of an evolving software product line using
state-based modeling. It focuses on how to identify,
model and analyze potentially unsafe feature
interactions.

3.1. Safety Analysis of Evolving Software
Product Lines Using State-Based Modeling

 We here provide a step-by-step overview of our
technique for safety analysis of software product lines
using state-based modeling for a product line during
evolution.

3.1.1. Commonality and Variability Analysis. The
Commonality and Variability Analysis (CVA)
documents the product line’s requirements [30].
During evolution, new feature requirements (i.e.,
variabilities) are added to the CVA, possibly using a
product-line requirements analysis tool, such as
DECIMAL [25], as done here.

3.1.2. Product-Line Software Fault Tree Analysis
(SFTA). A product-line SFTA will need to
accommodate the new features if they can potentially
contribute to causing one of the failures described in
the SFTAs. The new features may require the
modification of the product-line SFTA by adding
entirely new fault trees as a result of the possibility of
new root node hazards occurring. This requires the
construction of a product-line SFTA just as done
during the initial development of a product line [10].
 Additionally, new features introduced during
product-line evolution may need to be included in
existing product-line SFTAs. To accomplish this, each
existing fault tree is analyzed to see how the new
feature(s) can contribute to cause the root node
hazards. This may entail adding subtrees to the existing
fault trees or associating the requirements of the new
feature with the leaf nodes of the fault tree. Here we
use the SFTA tool PLFaultCAT [10], to achieve this.

3.1.3. Variation model generation. We map the leaf
nodes of the product-line SFTA to architectural
components and then model the behavior of the

architectural component in a state model. During the
initial development of a product line, the state-chart
model is incrementally built from the product that has
the fewest variable features until all features are
included into the state model [20] [21].
 To address product-line evolution, any new features
are incrementally integrated into the state model. To
achieve this, any newly created SFTAs, a result of Step
2, will need to map the SFTA’s leaf nodes to a new or
existing architectural component. If they are mapped to
an existing component, that component’s behavior
must be modified to include the new behavior
introduced by the new feature(s). If they are mapped to
a new architectural component, that new component’s
behavior should then be modeled and integrated into
the product-line state model. For the existing product-
line SFTAs that were modified to accommodate the
new features, we need to include the new behaviors
into the architectural components representation in the
state model.

3.1.4. Scenario derivation. Using the product-line
SFTA, we derive required scenarios (i.e., those
scenarios that enforce a safety property) and forbidden
scenarios (i.e., those scenarios that emulate a hazard).
For the newly created product-line SFTAs, the process
described in [20] [21] suffices. For the existing
product-line SFTAs that were modified as a result of
the new features, the scenarios that were developed
during the initial product line’s construction must be
altered to accommodate the behavior described in the
new subtrees of the SFTAs. This will result in
modified testable scenarios that need to be re-executed
in Step 5 since the behavior they display as a result of
evolution may differ from when they were executed
and verified during the product line’s initial
development.

3.1.5. Scenario-guided model analysis. The
developed scenarios, from Step 4, are exercised against
the state model, from Step 3. Although the introduction
of the new feature as a result of evolution may not have
altered all the testable scenarios from the initial
development, all scenarios should be exercised against
the model to ensure that the inclusion of new features’
behavior into the model does not produce
undesired/unknown effects (i.e., a regression testing
approach). This step then follows [20] [21]: a failure in
the execution of the required scenarios indicates
inconsistencies between the model execution and the
specified scenario; a forbidden scenarios execution will
indicate a need to update the design if it is found to
allow illegal/hazardous behavior. In each case, an
update to the design is warranted if undesired behavior
is detected when executing the scenarios in the state

model. In this work, we used TestConductor to
exercise the model in the Rhapsody modeling
environment [24].

3.2. Identifying and Modeling Safety-Critical
Feature Interactions

 The evolution of a software product line is more
complex than for single software systems since new,
possibly conflicting, features from the existing
products in the product line and the newly introduced
features for the new products can result in
unsafe/undesirable feature interactions [29]. For
example, the 1996 explosion of the initial flight of the
Ariane 5 rocket was partially blamed on the interaction
of the new features introduced in the Ariane 5 with the
features retained from the earlier, Ariane 4, rocket [19].
Thus, it is crucial to ensure that product-line evolution
does not introduce feature interactions that
compromise the safety properties that the product line
previously ensured.
 To address this, our approach focuses on the
identification and modeling of safety-critical feature
interactions to determine whether they may cause a
hazard. In the case that the feature interactions could
cause a hazard, we explore in simulation the effects of
possible alternatives in the model to prevent such an
unsafe feature interaction. The identification and
analysis of new safety-critical feature interactions in
the product line introduced as a result of the inclusion
of a new feature(s) during evolution consists of the
steps described below.

3.2.1. Identification of safety-critical feature
interactions. A product-line software fault tree
analysis (SFTA) associates a product line’s
requirements (i.e., commonalities and variabilities)
with the leaf node failure events that may lead to the
occurrence of the root node hazard. As described in
Section 3.1, Step 2 as well as in [10], the evolution of a
product line will associate new product-line
requirements with the leaf nodes of existing SFTAs
along with former requirements.
 After the adaptation of the product-line SFTAs to
the new features introduced as a result of evolution, the
safety-critical feature interactions can be identified by
searching for those product-line requirements that
frequently contribute to the possible causes of the fault
tree’s failure nodes. PLFaultCAT [10], the product-line
SFTA tool used here, can automatically identify those
product-line requirements and combination of product-
line variabilities (i.e., features) that contribute to the
most potential failures as defined in the SFTA.

 This analysis provides a prioritized list of those
product-line requirements and feature interactions that
warrant further scrutiny using an executable state-
based model. That is, those product-line requirements
and feature interactions that are deemed to contribute
to the most fault tree failure nodes are more likely to
have unsafe interactions with existing product-line
requirements and should have their behaviors modeled
in order to determine the safe/unsafe behaviors using a
dynamic analysis.

3.2.2. State-based modeling of feature interactions
to determine safe/unsafe behavior. We here describe
our approach using executable state models and
scenarios. To determine the safety of feature
interactions using our state-based model, we first take
a manageable sub-tree of the product-line SFTA. The
variabilities in the cut-set of such a fault tree can be
used to map to components in the architecture diagram
of the product line. If there are new features introduced
into the product line, we need to update the
architecture design if such a new feature will introduce
new components or new associations between
components.
 Next, we take the state models of those components
where the safety related variabilities reside. For newly
introduced features, it is likely that the existing state
models will be updated, or new state models will be
created. We then derive the events that are identified as
potentially causing hazards and their direct
consequences from SFTA. The causative events and
their consequences, represented as message passing
between involved components, form required or
forbidden scenarios to analyze in the following steps.
 Next, we execute the models and inspecting the
execution sequences either manually or automatically,
with the scenarios previously identified as guidance.
The manual inspection includes monitoring the
message-passing sequence diagram among the
components that are identified in the derived scenarios,
pausing at points of importance, and selectively
investigating details in the animated statechart view of
a specific component when necessary. Manual
inspection also includes injecting events at run-time to
test the response of the system under different
environmental inputs.
 The automatic inspection involves using a scenario-
based state model testing tool, such as TestConductor,
that captures requirements regarding absolute or partial
ordering of messages as sequence diagrams, and
testing the sequence diagram against the actual order of
message-passing during the state model execution.
Such tests can be automatically executed for improved
inspection.

 The manual inspection is more flexible and more
informative for requirements that cannot be easily
modeled by sequence diagrams due to the nature of the
requirements or limits of the tool [20] [21], while the
automatic inspection is more thorough, providing more
assurance regarding a testable scenario. The outcome
gives users information regarding whether a forbidden
scenario is likely to happen and how it may happen, or
whether a required scenario can sometimes not happen.
This is because the execution will give the actual
execution scenarios providing details confirming or
contradicting the scenarios derived. Note that this
scenario-guided inspection of model execution gives
no guarantee as to whether a required scenario is
always going to happen or a forbidden scenario is
never going to happen – that requires the more
rigorous reasoning provided by formal methods [4].
 After inspection, we need to find mechanisms to
avoid forbidden scenarios from happening or enforcing
required scenarios, using the detailed results from the
previous step as guidance. Such mechanisms, once
implemented in the state model, will again be
inspected during execution, as described above, to
decide if they do achieve their goals. Once confirmed,
these mechanisms can be used to suggest new
requirements update.
 While a new feature is likely to update an existing
SFTA or even introduce a new SFTA, previous SFTA-
related state models may be re-validated (by running
through the process described above) to ensure that the
new feature does not interfere with them. Such a re-
validation process can be done by adding the new
feature related component into the scenario to check if
there is any potential interaction between this
component and the components residing in the original
sequence diagram.

4. Application to the Evolution of a
Product-Line Pacemaker

 This section applies the approach described in
Section 3 to a safety-critical, product-line cardiac
pacemaker.

Figure 1. Product-Line Architecture after Evolution

Extra
Sensor

Base
Sensor

Pulse
Generator

Event
Recorder

Pacemaker
Controller

4.1. Description and Evolution

To illustrate our approach, we build upon the
pacemaker product line described in [20] [21]. A
pacemaker is an embedded medical device designed to
monitor and regulate the beating of the heart when it is
not beating at a normal rate. It consists of a monitoring
device embedded in the chest area as well as a set of
pacing leads (wires) from the monitoring device into
the chambers of the heart [13]. In our simplified
example, the monitoring device has three basic
components: a sensing component (sensor) that senses
heart beat, a stimulation component (pulse generator)
that generates pulses to the heart, and a controlling
component (controller) that configures different pacing
and sensing algorithms and issues commands. Here,
we only consider a single-chambered product line of
pacemakers that does pacing and sensing in the heart's
ventricles.

Our simplified pacemaker product line consists of
the following products and features:
• BasePacemaker – This product has the basic

functionality shared by all pacemakers: generating a
pulse whenever no heart beat is sensed during the
sensing interval.

• ModeTransitivePacemaker – This product can
switch between InhibitedMode and TriggeredMode
during runtime. In the InhibitedMode, the
pacemaker acts exactly like a BasePacemaker. In
the TriggeredMode, a pulse follows every heartbeat
to provide a different type of therapy.

• RateResponsivePacemaker – This product acts
similarly to the BasePacemaker but contains an
extra sensor allowing it to adjust its sensing interval
according to the patient’s current activity level:

LRLrate, for a patient’s normal activities and URL
rate, for when a patient is exercising.

• ModeTransitive-RateResponsivePacemaker -
This product combines the features of the
ModeTransitivePackemaker and the
RateResponsivePacemaker.
The evolution of the pacemaker product line that

we consider here involves the addition of an
EventRecorder component, shown in Fig. 1, to log
critical events in the major components of a pacemaker
and is used for making therapy decisions. For instance,
EventRecorder calculates the number of heart beats
sensed by BaseSensor during a fixed recording interval
and compares that value with some threshold value to
decide if the pacemaker should switch between
InhibitedMode and TriggeredMode during run-time.
Different pacemakers can log different events at
different times, as shown in Table 1.
 The addition of the EventRecorder feature was
included into the product line’s requirements using
DECIMAL [25].
 Due to the cross-cutting nature of the
EventRecording feature, the risk of unsafe feature
interaction is higher. For example, when the average
number of heart beats in a 6000 msec recording
interval exceeds a 24-beat threshold, the
EventRecorder shall consider that the patient’s heart is
fibrillating, so it will command the
PacemakerController to switch from InhibitedMode to
TriggeredMode to defibrillate it. It must be ensured
that the features added to PacemakerController due to
the introduction of EventRecorder interact with the
existing features in PacemakerController in a
predictable manner and that there are no unexpected
and/or unsafe feature interactions.

Table 1. Event Recording Feature’s Commonality and Variability
Product
Name Component Name Events to Log

Base Sensor Average heart rate sensed every fixed recording interval Base
Pacemaker Pulse Generator The pulse width of every pulse being made

Base Sensor Average heart rate sensed every fixed recording interval Mode
Transitive
Pacemaker Pulse Generator 1) In the Triggered mode, the average number of pulses generated every fixed recording interval

2) In the Inhibited mode, the pulse width of every pulse being generated

Base Sensor Average heart rate sensed every fixed recording interval

Pulse Generator The pulse width of every pulse being made
Rate

Responsive
Pacemaker

Extra Sensor The percentage of the pacemaker sensing at LRLrate every fixed recording interval

Figure 2. Excerpt of Pacemaker Product-Line SFTA in

PLFaultCAT after Evolution

4.2. Product-Line SFTA Evolution

 The inclusion of the EventRecorder feature into the
pacemaker product line required both the updating of
existing product-line software fault tree analyses
(SFTA) and the creation of new product-line SFTAs to
accommodate the new failure modes that the new
feature brings to the product line. For example,
because of the new behavior introduced by the
EventRecorder feature, a product-line SFTA with a
root node of “Failure to switch modes”, shown in Fig.
2, had to be added. The creation of the new product-
line SFTA with a root node of “Failure to switch
modes” required the association of the requirements of
the new EventRecorder feature as well as those
features from existing product-line products. For
example, as illustrated in Fig. 3, the ModeTransitive
feature (found in the ModeTransitivePacemaker and
the ModeTransitive-RateResponsivePacemaker
products) may interact with the EventRecorder feature
to cause a hazard. Yet, from examining the SFTA, it is
not entirely clear how these two features can interact to
cause such hazards, thus the need for further analysis.
 Using PLFaultCAT, we can analyze the set of
product-line SFTAs to find other such combinations of
features that may cause hazards to direct the safety
analysis, described in Section 4.3, to those feature
interactions, like shown in Fig. 3, which may need to
be further scrutinized.

Figure 3. Excerpt of Product-Line SFTA Illustrating

Potential Feature Interactions

4.3. State-Based Modeling of Safety-Critical
Feature Interactions and Derivation of New
Safety Requirements

 This section illustrates the steps involved in using
the state-based modeling approach to promote safe
evolution of a product line. It uses the example of an
EventRecording feature introduced as an existing
pacemaker product line evolved.
 The new EventRecording feature has introduced a
possible hazard, “failure to be in the TriggeredMode
when the heart beats too fast”, shown in Fig. 3. The
subtree shown here concretizes this high-level hazard
by adding events (e.g., the mode switch event sent
from the operator and the mode switch event sent from
the EventRecorder), conditions (e.g., the heart beats
too fast), and the consequences (both safe and unsafe,
e.g., required scenario: remains in TriggeredMode;
forbidden scenario: fails to remain in TriggeredMode).
The refinement of the hazard node in this way forms
the scenario to check against the state models.
 For the subtree in Fig. 3, we model the components
that implement the leaf node requirements. For
example, the ModeTransitive feature is implemented
by the PacemakerController component, the
MotionSimulator component, and the ExtraSensor
component.
 After the state models are generated, we instantiate
the scenario captured in the subtree by mapping the
events, conditions, and consequences to model-level
elements. For example, the mode switch event sent
from the operator is mapped to the
“evInhibitedMode()” message, and the mode switch
event sent from the EventRecorder is mapped to the
“evTriggeredMode()” message, while the “heart beats
too fast” condition is represented by a concrete
threshold for the heart beats (16 beats while in

Figure 4. Excerpt of Pacemaker Animated Sequence Diagram

LRLrate, and 24 beats while in URLrate). The safe and
unsafe consequences are mapped to
PacemakerController component being in the
TriggeredMode state and the InhibitedMode state,
respectively.
 Note that simple state models of other components,
even if they do not directly implement the leaf node
requirements, such as the PulseGenerator component,
can also be generated if their responses in the
execution help illustrate the above scenarios more
clearly.
 The next step animates the generated state models
using Rhapsody. The animation process, as explained
in Section 3.2, is mainly composed of animated
sequence diagrams illustrating message passing during
model execution, and animated state charts illustrating
states and transitions taken at run time.
 Fig. 4 shows a portion of the animated sequence
diagram. It is a point where the fixed recording interval
has expired (as shown by the “tm(6000)” message),
Since the recorded number of heart beats is 20 (greater
than the 16 threshold, indicating that the heart is
beating too fast), the EventRecorder commands
PacemakerController to switch mode from
InhibitedMode to TriggeredMode. However, if we then
inject an evInhibitedMode() event to
PacemakerController, it will switch back to Inhibited
mode, as shown in the animated statechart in Fig. 5
(the current states are highlighted), despite the fact that
the heart is still beating too fast.
 The animation shows that the scenario we captured
in the fault tree, Fig. 3, and instantiated in the model
level can actually happen. It also shows how this
unsafe scenario can happen: when the two events
(evInhibitedMode() and evTriggeredMode()) occur in a
certain order (evTriggeredMode() first and
evInhibitedMode()) second). As we discuss below, it is
these sorts of ordering and timing issues that the
executable state model, unlike the fault tree, can reveal.
 Since the animation is done with the executable
models, it also provides concrete insights into how to
mitigate this potentially hazardous scenario, namely by
adding a mechanism that locks the

PacemakerController in Triggered mode when the
heart beats too fast. The benefit of model-level analysis
is that the new mechanism can be tested right away to
see if it conforms to the safe scenario.
 Another benefit is that we can readily investigate
several mechanisms in order to select the more reliable
and easy-to-implement one. For example, there are at
least two ways that we can implement the mitigation
mechanism. One option is to name the mode-switch
messages sent from the EventRecorder and the
Programmer differently and to give the
EventRecorder’s message higher priority than the
Programmer’s. Another option is to set up an internal
variable in the PacemakerController that records the
heart’s status as beating too fast or not. Such a variable
is used for guarded transitions from the
TriggeredMode state to the InhibitedMode state and
can only be changed when the EventRecorder detects a
heartbeat.
 While both mechanisms prevent the unsafe scenario
from happening, the first one is more restrictive in that
it grants the EventRecorder priority on messages
switching both into, and out of, TriggeredMode The
second one just enforces the EventRecorder’s priority
in switching out of TriggeredMode. However, the
second alternative allows the possibility of the
Programmer and the EventRecorder racing to switch
into TriggeredMode. If the second alternative is
selected, this suggests that we may want to introduce
additional requirements to handle this possible race
condition.

5. Discussion

 This work utilized a product-line software fault tree
analysis (SFTA) and state-based modeling of critical
components to identify potentially unsafe feature
interactions [5]. This approach provides some
advantages over the use of feature diagrams. Feature
diagrams can document identified interactions but fail
to indicate the feature interactions that are safety-
critical. The product-line SFTA, however, aids us in
identifying those feature interactions that can cause

Figure 5. Animated PacemakerController Statechart in the Evolved Product-Line State Model

top-level failure events (i.e., those feature interactions
that are safety-critical). We found that using the
product-line SFTA greatly reduced the number of
feature interactions that had to be investigated.
Focusing on critical interactions makes our approach
more amenable to use in an industrial setting.
 The use of a state-based modeling approach for
safety analysis during evolution is advantageous
because it can both build on and extend the product-
line fault tree analysis. Unlike SFTA, an executable
state-based model can analyze and model the
timing/ordering of failure events to determine their
possible safety implications. In addition, we found that
because the SFTA is a static asset, it lacks the ability to
animate and explicitly show how a safety property may
be violated. The use of an executable state-based
model, however, allows the simulation of the behaviors
described by the requirements in the fault tree to
illustrate the violation of a safety property.
 We found that although Rhapsody’s executable
state-based models support real-time notions, as
required in our pacemaker case study, it cannot enforce
exact real-time measurement. Thus, the state-based
modeling technique described here is not suitable for
testing border time values; rather, it can handle testing
the ordering logic and relative timing of failure events.
 The exploration of alternative new software
behaviors in the state-based model to prevent or
mitigate the violation of a safety property allows
immediate feedback on whether proposed, new safety
requirements will indeed guard against the violation of
the safety property. Moreover, the executable state-
based model, unlike a SFTA, can explore multiple
solutions to come up with a reliable and easy-to-
implement mitigation strategy. This then drives the
updating of the product line’s requirements to include
the new safety requirements. Such feedback is
impossible to ensure using the SFTA alone. Thus, the
inclusion of a state-based modeling safety analysis

approach, as described here, may improve the safety
case that a safety-critical product line must make when
requiring certification from an outside governing body.
 Reuse of the product-line SFTA as well as of the
product-line state-based models constructed during the
initial development of the product line, occurred during
system evolution in this work. Although, some updates
were required to accommodate the new features
introduced, large parts of the previously developed
safety analysis assets could be reused.
 The use of DECIMAL [25], the product-line
requirements documentation and analysis tool, coupled
with the use of PLFaultCAT [10], the product-line
SFTA tool, improved the traceability of the
requirements to the components of the state-based
models. The leaf nodes of the fault trees constructed in
PLFaultCAT are associated with the commonalities
and variabilities of the product line, and the state-based
models are derived using information from the SFTA.
Additionally, the use of PLFaultCAT to identify those
feature interactions that may be safety-critical, and
therefore should be analyzed using state-based models,
helps maintain the traceability of requirements to the
state-based safety analysis as the product line evolves.

6. Conclusion

Product-line engineering presents an advantageous
approach to developing software systems because the
reuse can reduce the development time and cost. Yet,
handling product-line evolution is more complex than
in traditional software systems because changes to the
software requirements may affect or even compromise
the various safety properties of multiple products. In
particular, the analysis of feature interactions is
important because, during evolution, the new features
introduced into a product line may have unknown and
unsafe interactions with the existing features.

This paper illustrated an approach, built on our
previous work with stable product lines, to performing
a safety analysis on an evolving product line using a
product-line software fault tree analysis to direct state-
based modeling. The paper detailed and demonstrated
a tool-supported technique to: 1. link product-line
requirements to their state-based model components; 2.
identify and analyze safety-critical feature interactions;
and 3. modify and reuse product-line state-based
models to analyze the new features added as a result of
evolution. This technique utilized a product-line
software fault tree analysis to avoid and manage the
complexity of feature interactions.

Future work includes refining our technique and
developing further tool-support to provide further
guidance in the application of this technique.

7. Acknowledgements

This research was supported by the National
Science Foundation under grants 0204139, 0205588
and 0541163. We also thank Telelogic for the use of I-
Logix’s Rhapsody and TestConductor tools.

8. References

[1] Bennett, K. and Rajlich, V., “Software Maintentance

and Evolution: A Roadmap”, The Future of Software
Eng., ACM Press, pp. 75-87, 2000.

[2] Booch, G., et. al.., The Unified Modeling Language
User Guide, Addison-Wesley, 2005.

[3] Campbell L, et. al., "Automatically Detecting and
Visualizing Errors in UML Diagrams", Requirements
Eng. Journal, Springer-Verlag, pp. 264-287, 2002.

[4] Clarke, E. M. and Wing, J. M., “Formal Methods: State
of the Art and Future Directions”, ACM Computing
Surveys, 28(4):626-643, 1996.

[5] Clauss M., "Modeling variability with UML", Proc.
Net.ObjectDays 2001 Workshop on Generative and
Component-Based Software Eng., pp. 226–230, 2001.

[6] Clements, P. and Northrup, L., Software Product Lines:
Practices and Patterns, Addison-Wesley, 2001.

[7] Czerny B. J., and Heimdahl, M., “Automated Integrative
Analysis of State-based Requirements", Proc. 13th Int’l
Conf. Automated Software Eng, pp. 125-134, 1998.

[8] de Lemos, R., "Safety Analysis of an Evolving Software
Architecture", Proc. 5th Int’l Symp. on High Assurance
Systems Eng., pp. 159-167, 2000.

[9] Dehlinger, J. and Lutz, R. R., "A Product-Line
Approach to Promote Asset Reuse in Multi-Agent
Systems," Software for Multi-Agent Systems IV, Lecture
Notes in Computer Science 3914, pp. 161-178, 2006.

[10] Dehlinger, J. and Lutz, R. R., "PLFaultCAT: A Product-
Line Software Fault Tree Analysis Tool," Automated
Software Eng. Journal, 13(1):169-193, 2006.

[11] Deng, G., et. al., “Addressing Domain Evolution in
Model-Driven Software Product-Line Architectures”,

Proc. Workshop Model-Driven Development for
Software Product Lines: Fact or Fiction?, 2005.

[12] Doerr J., Requirements Engineering for Product Lines:
Guidelines for Inspecting Domain Model Relationships,
Diploma Thesis, University of Kaiserslautern, 2002.

[13] Ellenbogen, K. A. and Wood, M. A., Cardiac Pacing
and ICDs, Blackwell Publishing, 2005.

[14] Feng, Q. and Lutz, R. R., "Bi-Directional Safety
Analysis of Product Lines," Journal of Systems and
Software, 78(2):111-127, 2005.

[15] Gomaa, H., Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software
Architectures, Addison-Wesley, 2005

[16] Harel, D. and R. Marelly, Come, Let’s Play: Scenario-
Based Programming Using LSCs and the Play-Engine,
Springer, 2003.

[17] Kang, K., "Software Product Line Research Topics,"
Proc. 10th Int’l Software Product Line Conf., 2006.

[18] Leveson, N. G., Safeware: System Safety and
Computers, Addison-Wesley, 1995.

[19] Lions, J. L., “Ariane 5: Flight 501 Failure Report”,
http://sunnyday.mit.edu/accidents/Ariane5accidentrepor
t.html, (Current January 2007).

[20] Liu, J., Dehlinger, J. and Lutz, R. R., "Safety Analysis
of Software Product Lines Using State-Based
Modeling," To appear Journal of Systems and Software.

[21] Liu, J., Dehlinger, J. and Lutz, R. R., "Safety Analysis
of Software Product Lines Using State-Based
Modeling," Proc. 16th IEEE Int’l Symp. on Software
Reliability Eng., pp. 21-30, 2005.

[22] Lu, D and Lutz, R. R., "Fault Contribution Trees for
Product Families", Proc. 13th Int’l Symp. Software
Reliability Eng., pp. 231-242, 2002.

[23] Lutz, R. R., "Software Engineering for Safety: A
Roadmap," Proc. Conf. on the Future of Software Eng.,
pp. 213-226, 2000.

[24] “Model Driven Development for Real-Time Embedded
Applications”, Rhapsody Family Brochure,
http://www.ilogix.com/rhapsody/rhapsody.cfm, (Current
January 2007).

[25] Padmanabhan, P. and Lutz, R. R., “Tool-Supported
Verification of Product-Line Requirements”, Automated
Software Eng. Journal, 12(4):447-485, 2005.

[26] Prehofer, C., “Plug-and-Play Composition of Features
and Feature Interactions with Statechart Diagrams”,
Proc. 7th Int’l Workshop Feature Interactions in
Telecommunications and Software Systems, 2003.

[27] Schmid, K. and Verlage, M., "The Economic Impact of
Product Line Adoption and Evolution," IEEE Software,
19(4):50-57, 2002.

[28] Schwanke R. and Lutz, R., "Experience with the
Architectural Design of a Modest Product Family",
Software Practice and Experience, 34(13):1273-1296,
2004.

[29] Svahnberg, M. and Bosch, J., “Characterizing Evolution
in Product Line Architectures”, Proc. of the 3rd annual
IASTED Int’l Conf. on Software Eng. and Applications,
pp. 92-97, 1999.

[30] Weiss, D. M. and Lai, C. T. R., Software Product-Line
Eng., Addison-Wesley, 1999.

