A Product-Line Approach to Promote Asset Reusein
Multi-Agent Systems

Josh Dehlingérand Robyn R. Lufz

! Department of Computer Science, lowa State Unityer226 Atanasoff Hall,
Ames, lowa, USA 50011
dehlinge@cs.iastate.edu
http://www.cs.iastate.edu/~dehlinge

2 Department of Computer Science, lowa State Unitye1226 Atanasoff Hall,
Ames, lowa, USA 50011
and Jet Propulsion Laboratory / Caltech
rlutz@cs.iastate.edu
http://lwww.cs.iastate.edu/~rlutz

Abstract. Software reuse technologies have been a drivingefoin
significantly reducing both the time and cost offtware specification,
development, maintenance and evolution. Howeveg, diinamic nature of
highly autonomous agents in distributed systemdiffécult to specify with
existing requirements analysis and specificatiameues. This paper offers
an approach for open, agent-based distributed acétveystems to capture
requirements specifications in such a way that tdeybe easily reused during
the initial requirements phase as well as latethé software needs to be
updated. The contribution of this paper is to pdeva reusable requirements
specification pattern to capture the dynamicallgraying design configurations
of agents and reuse them for future similar systehids is achieved by
adopting a product-line approach for agent-basdtivae engineering. We
motivate and illustrate this work through a speciéipplication, a phased
deployment of an agent-based, distributed micrdizateonstellation.

1 Introduction

Software reuse technologies have been a driving fiorsggnificantly reducing both
the time and cost of software requirements specificatievelopment, maintenance
and evolution. Industry's continuous demand for shedéware development cycles
and lower software costs encourages software developmathbdologies to exploit
software reuse principles whenever possible.

Agent-oriented, software-based approaches have mmbvidwerful and natural
high-level abstractions in which software developess cinderstand, model and
develop complex, distributed systems [5]. Yet, thalization of agent-oriented
software development partially depends upon whethentagased software systems
can achieve reductions in development time andsioslar to other reuse-conscious



2 J. Dehlinger and R. R. Lutz

software development methods such as object-orientejndeservice-oriented
architectures and component based systems.

In recent years, several agent-oriented software nergng (AOSE)
methodologies have been proposed for various dupegde application domains. The
Gaia methodology [28], in particular, offers a caefensive analysis and design
framework based on organizational abstractions Ipplging schemas, models and
diagrams to capture the requirements of an agent-baffe@sosystem.

However, Gaia has two limitations. First, althougha3arovides a mechanism to
allow the role of an agent to change dynamicatlis unclear how to document agent
requirements specifications during the analysis angjdghases when an agent must
be updated to include new functionality. Secona& @Gaia methodology fails to
provide a mechanism by which the requirements spetificaemplates developed
during the analysis phase can be reused to be inedegointo the current system or
to build a new, similar but slightly different system.

This paper offers an approach for open, agent-baistéribdted software systems
to capture requirements specifications that can dslyereused during the initial
requirements phase as well as later if the softwessls to be updated. Our approach
uses a product-line perspective to promote reuse int-8gsed, software systems
early in the development lifecycle so that softwassets can be reused in the
development lifecycle and during system evolutiore #éfine groduct-line asseas
a software engineering output (including, but riotited to, architecture, reusable
software components, domain models, requirements stagntEtumentation and
specifications, and test cases) that forms, alongatfiter product-line assets, the core
for the development of a software product line Ble definesystem evolutioms
either the updating of an existing agent(s) in a @egl system or the inclusion of
additional agents in the system.

The contribution of this paper is to provide a reguoients specification pattern to
capture the dynamically changing design configuratiofi agents and reuse the
requirement specifications for future similar sys$effhis is achieved by adopting a
product-line approach into AOSE. Requirements sptifins reuse is the ability to
easily use previously defined requirements specifinatfrom an earlier system and
apply them to a new, slightly different system.

The integration of product-line concepts into AOSEands the techniques and
tools available to developers of multi-agent systems. dxample, software safety
analysis tools [10, 18] and techniques [10, 12, 16¢Hzeen developed by the authors
to assure developers that the reuse of requiremertsicpions is safe and will not
compromise the system via incompatible features ictiea in such a way as to
cause unsafe conditions. We motivate and illustrai® work through a specific
application, a phased deployment of an agent-basisthibdted microsatellite
constellation [19, 22]. A constellation is a group s&#mi- or fully autonomous
satellites working together to fulfill complex missiobjectives such as monitoring
ocean levels or the spread of wildfires.

The remainder of the paper is organized as followsti@e 2 reviews related
research in AOSE, product-line software engineesind a microsatellite application.
Section 3 presents our approach to define the @meints specification of an agent-
based, distributed system using the case study. Sedtipnovides step-by-step
guidance for documenting the requirements specifinatiof a distributed, multi-



A Product-Line Approach to Promote Asset Reuse uitiMigent Systems 3

agent-based system using the requirements specificptiiern presented in this
work in a product-line-like way. Section 5 describesv to use the requirements
specification detailed in Section 4 for reuse durgygtem changes and updates.
Finally, Section 6 provides concluding remarks andriutesearch directions.

2 Related Work

This work is based on two different areas of softwemgineering: agent-oriented
software engineering (AOSE) and software produd-lémgineering. This section
discusses background information and related work ¢h e these areas as well as
the application we use to illustrate our approadhigmwork.

21 Agent-Oriented Software Engineering

Agent-oriented software engineering (AOSE) [26] roelttiogies surfaced in the late-
90's to provide tools and techniques for abstractingdealing, analyzing and
designing agent-based software systems early in thelgenent lifecycle [21].
Different methodologies, such as Gaia [4, 27, 28hp0s [2] and MaSE [11] for
example, use different abstractions and models for tag@mted software
development. Although Tropos and MaSE are not theud of this paper, an
investigation of integrating a product-line approacto these AOSE methodologies
is planned future work.

From its onset, one of the goals of AOSE has beenawid® methodologies for
reusing and maintaining agent-based software systems I[23jpite of this goal,
AOSE methodologies have failed to adequately captiveereuse potential, since
many of the developed methodologies center on theldgwment of specific software
applications [13]. A few attempts, including [13] afidl], have been proposed for
reuse in an agent-oriented development environriwever, in each case, reuse is
positioned in the later stages of design and dewetop. In [13], the Multi-Agent
Application Engineering (MaAE) work exploits reuseridg the design phase of a
multi-agent software system. Likewise, [14] utilizesise principles from component-
based development to reuse components from a preyideskloped agent-based
component repository. The work described here diffem previous work in that we
present an approach to capture the reuse potehti@tdbuted, agent-based software
systems in the requirements analysis and specificatioa.stag

As in Gaia, our approach follows an early requirememgineering phase that
focuses on analyzing the "characteristics to be ebeuitdnd the goals to be achieved
by the system-to-be" [27]. Our approach utilizes theput produced from the
requirements engineering phase which may includesgaatl sub-goals, detailed
requirements and partial requirements specificatiddk [



4 J. Dehlinger and R. R. Lutz

2.2 Product-Line Engineering

We follow Northrop et al. in defining a software gduxt line as a set of software-
intensive systems sharing a common, managed set ofdedhat satisfy the specific
needs of a particular market segment or mission [Iff{¢ common, managed set of
features shared by all members of a product lineaied its commonalities. For
example, a commonality of a planner role for a nsatellite would be that it should
be able to know (i.e., read) its current positiohe Tnembers of a particular product
line may differ from each other via a set of allowediabilities. In our application, an
important variability is théevel of intelligenceof the agent or member. For example,
a particular intelligence level of a planner rabe & microsatellite would be that it has
the ability to command other microsatellites to mtwenother position. Additional
examples of commonalities and variabilities are giveRigure 2. The benefits of the
product-line approach come from the reuse of thenconalities in developing a new
product-line member [20]. We define a member as glesimstance or system of the
product line. In the application used in this worknamber is a single microsatellite
within the constellation.

Weiss and Lai defined the Family-Oriented Abstracti@pecification and
Translation (FAST) software engineering model to yre&aland design software
product lines [25]. This model employs a two-phaséwsok engineering approach:
the domain engineering phase and the applicatiomeedng phase. Thdomain
engineeringphase defines the product line requirements spatidits and design.
The second phase, tapplication engineeringhase, reuses these product-line assets
(i.e., the product line requirement specifications athekign) to develop the
requirements and design of new product-line members.

Product-line requirements are often specified tghoua Commonality and
Variability Analysis (CVA) [1, 25]. The CVA, deveped during the domain
engineering phase of FAST, provides a comprehensifieitdm of the product line
requirements including the commonalities (i.e., regmints of the entire product
line) and the variabilities (i.e., specific featurex nontained in every member of the
product line) of the product line.

In this paper we use product-line techniques tosfeanagent roles in the Gaia
methodology into reusable assets. We demonstrate havireeeents detailed in a
CVA can be easily mapped into the Role Schema andRtile Variation Point
Schema of the Gaia analysis phase using a productpipeach. Doing so helps link
the requirements specification patterns for defininges within the Gaia
methodology to earlier requirements engineering as€aiis. approach maintains
consistency with the widely published Gaia methoggl[28] of AOSE as well as the
FAST methodology [25] of software product-line eregring.

2.3 Application

We illustrate how our approach can be used by apglitito portions of an agent-
based implementation of a constellation, loosely basethe requirements for the
TechSat21 (Technology Satellite of the'Zlentury) [19]. TechSat21 was a proposed
mission, originally scheduled to launch in January 2B06cancelled in late 2003



A Product-Line Approach to Promote Asset Reuse uitiMigent Systems 5

with much of the software reused on a subsequent mig8jort was designed to
explore the benefits of a distributed, cooperatippraach to satellites employing
agents [7, 22]. TechSat2l is a constellation (i.eustel) of context-aware
microsatellites (weighing less than 100 kilograms). Newerosatellites will be
deployed to the constellation in multiple, plannéadges with the new microsatellites
potentially having additional capabilities not founidh previously deployed
microsatellites while sacrificing functionality found other microsatellites [7, 22].
For example, after the initial cluster of microsated is deployed, some additional
microsatellites may be deployed with extra functiagpdor the Cluster Allocation
Planner role that the initially deployed microsdied will lack.

Within the constellation, each microsatellite mustwrits context in order to meet
certain functional or non-functional requirementageld upon the constellation. For
example, a context-based, functional requirementeglagpon the constellation is to
perform earth science (i.e., taking sensor readipgetographs, etc.). Thus, each
microsatellite needs to know its context in relationEarth. A context-based, non-
functional requirement placed upon TechSat21 micetltes is that each
microsatellite must know its position in relation to eth to avoid collisions.
Similarly, microsatellites within the constellation stucooperate to meet mission
requirements.

Schetter, Campbell and Surka have investigated depessible agent-based,
organizational architectures for the TechSat21 ctiastm. They evaluated each
agent-based, organizational architecture throughmalation tool to derive a multi-
agent architecture that would offer good supporfdait tolerance and upgradeability
[19]. Separately, Chien et al. have similarly proposedigh degree of agent
autonomy for a constellation of satellites. In theiorky they demonstrate how
continuous planning, model-based mode identificatiwh econfiguration and other
artificial intelligence technologies can be used inhybrid, multi-layer control
architecture to facilitate a virtual spacecraft raggy]. We partially use the agent
specifications for the TechSat21 microsatellite cdladien detailed in [7] and [19]
for the requirements specification presented hereelsas the notion of an agent
possibly having different levels of intelligence ddésed in [19].

3 Approach

To illustrate the adaptation of a product-line apgio to multi-agent system
development, we use the agent-based implementationthef microsatellite
constellation (i.e., distributed system) detailedlif]] Like them, we define aagent
as a major onboard subsystem of a microsatellite or itr@satellite itself [9, 19].

3.1 Adopting Product-Line Conceptsinto the Gaia M ethodology

The work presented here ties some of the analysis steftsmed in Gaia to earlier
requirements engineering outputs. Gaia, however, amésexplicitly handle the
requirements capturing and modeling of early requénets engineering. To address
this, we link the Commonality and Variability AnalggiICVA) [1], performed within



6 J. Dehlinger and R. R. Lutz

Requirements.

REQUIREMENTS

DOCUMENTATION Commonality

and

Variability
Analysls

v

| Role Vanation Point Schema
ANALSYSIS & DESIGN Role Schema —— —{ Role Varation Point Sehema

Role Variation Point Schema

|
v

Role Deployment
Schema

DETAILED DESIGN l

Agent Model

v

IMFLEMENTATION

Fig. 1. An overview of the software engineering assets useour Gaia-based product-line
approach during requirements documentation, arsafyei design and detailed design phases

the domain engineering phase of the Family-Oriedtlestraction, Specification and
Translation (FAST) product-line methodology (degdilin Section 2.2) [25] to the
analysis and design of roles in a distributed, mul@ragsystem. Doing so, we are
able to use a product-line-like approach to spetié/ requirements of a distributed,
multi-agent system where differing intelligence isesign consideration. Note that
the use of a CVA is not necessary. Developers may utdiber requirements
modeling techniques such as goal-oriented [3] otufeeoriented [15] approaches.
We discuss the advantages of using a CVA over thegeaghes in Section 4.1.

We first give an overview of how we integrate pradiime concepts into multi-
agent system development in order to build reusadttenms. Our approach, shown in
Figure 1, partially encompasses three phases of ngdtitasystem development.
Figure 1 illustrates how we incorporate elementswfapproach into pieces of the
Gaia methodology. The requirements collection anclid@ntation phase, a part of
FAST's domain engineering phase [25], partitions #guirements for the proposed
system into commonalities and variabilities in the CVifhe analysis and design
phase, equivalent to FAST's domain engineering phasyj fEhd loosely
corresponding to Gaia's Preliminary Role Model anteRdodel steps [30], entails
documenting a role's requirements specifications witbih the Role Schema and the
Role Variation Point Schema. The Role Schema prevédeescription of the role and
defines the variation points possible, described befomthe role. For each variation
point, a Role Variation Point Schema details thesiregqnent specifications for a role
at a specific intelligence level.



A Product-Line Approach to Promote Asset Reuse uitiMigent Systems 7

We claim that the Role Schema and Role VariatiomtPSchema fall into the
analysis and design phase, rather than solely theysimaphase, since the
determination of variation points may influence, oe lnfluenced by, the
organizational architecture chosen (a product ef disign phase in Gaia) for the
multi-agent system being developed. For examples ttecision to use an
active/passive or master/slave type of variation tpiidicates that the architecture
will display a top-down or a central coordinatiorheme. On the other hand, the
intelligence-based design described below allowsfdistributed or fully distributed
coordination scheme. This process is described in Settio

In the detailed design phase of our approach, v iinstantiate a role for a
specific member of the distributed, multi-agent systgmsblecting the variation
points (i.e., intelligence levels) it is capable le tRole Deployment Schema. It is in
this phase that we are able to take advantage afetlse principles inherent in the
FAST product-line methodology's application engimegiphase [25]. Secondly, we
define an agent using an Agent Model by declaridgckv roles, along with their
variation points, it is responsible for fulfilling. &J/provide a full description of how
the product-line concepts utilized in the analysigl afesign phase are taken
advantage of to exploit the reuse potential in #taited design phase in Section 5.

As in the Gaia methodology [27], we define the regmients specification of an
agent's role, documented in the Role Variation P&ohema, in terms of the
following characteristics: protocols, activities, mpéssions and responsibilities.
Protocols define the way agents interaéictivities are the computations associated
with the role that can be executed without inténactvith other agent®?ermissions
are the information resource rights a role has td,redange and generate resources.
Responsibilitiesdefine the functionality of a role and are dividedo liveness
properties and safety properties. Liveness propenties to the "state of affairs that
an agent must bring about, given certain environnhecdgaditions" [27]. Safety
properties refer to that subset of the non-functioequirements that the agent must
maintain throughout the duration of the agent'stifprevent and handle hazards.

3.2 Using Variation Pointsin Multi-Agent Systems

Product-line engineering usemriation pointsto capture the allowed differences
amongst members belonging to the same family. We eléfia variation points for a
specific role as the differing protocols, activitiggermissions and responsibilities
available to that role. Variation points typicallyest from the grouping of the
variabilities defined in the Commonality and VariégilAnalysis (CVA) documented
as part of the output of the requirements enginegfiage.

An important way to classify variation points for aedlite constellation is
intelligence levels. In this work, we focus on thesgiation points. Here, we adopt
the notion of variation points to model a multi-agepstem as a product line. The
variation point notion is important because it aids dapturing the different
arrangements of agents and promotes reuse. For exangukSat21 roles [19],
ordered in terms of increasing intelligence levelghtéugh 11, display the following
variation points:



8 J. Dehlinger and R. R. Lutz

[ 14: receive/execute commands

[1 13: local planning and receive/execute commands

[112: local planning, interaction, partial clusterdwledge and receive/execute
commands

[1 11: cluster-level planning, interaction, full clustahowledge and receive/execute
commands

Thus, as a role is promoted to a higher intelligetee! (from 13 to 12, for
example) the configuration of the agent dynamicallyanges by incorporating
additional protocols, activities, permissions and/oreaspbilities. The reverse occurs
when a role is demoted from a higher intelligenaelléo a lower intelligence level
(from 12 to 13, for example). Using this construct, amation ofan agent has one or
more roles where each role may have one or more vanigtionts

The variation points will initially be fixed uponeployment based upon the
software and hardware facilities available as welthasrole's goal. At deployment a
default intelligence level for each role is set. Dgrexecution, a role may change its
variation point (i.e., intelligence level) based npts internal state, commands from
external sources or the environment. Alternativelythiwia distributed, agent-based
system, it is not likely that the same set of intellgeievels will be included in any
given role throughout the entire distributed systeni.[T®us, from a product-line
engineering perspective, we can view the set of ralestaining different
role/variation point combinations as a product lilee set of roles and dynamic
variation points an agent contains isdtsfiguration

The variation points in the constellation will na¢ bniversal to all agent-based,
distributed systems. Variation points are particulaeash application and, indeed,
particular to each role. For example, other variatpoints could include active,
passive; hot-spare, cold-spare; etc. For every vamigbint identified, we associate a
binding timewhich defines the time at which the variation paotld be assumed by
a role. Potential binding times include specificatione, configuration-time and run-
time. In the case of the constellation, the bindimgetfor all the variation points
described here is at run-time. The actual decisionoawhich features to group
together and how to classify each variation poird.(d1, 12, etc., versus hot-spare,
warm-spare, cold-spare) is likely domain and/or apfitinaspecific and is not
covered in this work. Rather, we assume that domaperéx group the variabilities
listed into variation points so that they can be usethd the analysis phase of Gaia.

Variation points are added with the Gaia charasties of a role [27]. This allows
us to leverage a product-line-like perspective to imee reuse among software
products that share a great many similarities amaraygt other and differ by only a
few variations. For example, it might be the case #lathe microsatellites in a
constellation responsible for monitoring volcano ¢ins will be very similar while
other microsatellites in the same constellation resplnsir capturing Earth
atmosphere pictures will greatly differ from the \peoeisly mentioned microsatellites
but will be similar amongst each other.

Identifying the variation points to which a role maynamically switch allows us
to classify at which variation points the protocolstivdiies, permissions and/or
responsibilities are introduced to the role. Pariing the requirements specifications
(i.e., the protocols, activities, permissions ancpoesibilities) of an agent in this



A Product-Line Approach to Promote Asset Reuse uttiMigent Systems 9

manner will allow us to reuse the requirement spetifina for future systems. Thus,
future agents within a domain such as Earth-orbitimgrosatellites can more readily
utilize assets that have been specified in such a Wagse future systems employ
roles comprising some of the variation points previpud#fined as well as new
capabilities not found in any of the previous systeBection 5 gives a more complete
description of how requirements specifications carebised.

Lastly, we here introduce identification numbersatb schemas for traceability,
organization and management purposes. The schemas &gne requirements
specification pattern in which requirements can Hadd and documented.

4 Documenting the Requirements Specifications using a Product-
Line Approach

This section describes the documentation of requiresnmamalysis and design, and
the detailed design phases, illustrated in Figurentorporating a product-line
approach into multi-agent system development. For gdase, we describe the
documentation process and how each document will taietribute to the ease of
reuse, discussed in Section 5.

4.1 Reguirements Documentation Phase

In the development of a software product line, regraents are collected and then
documented in a Commonality and Variability Analy§®@VA) [1, 25]. Using the
CVA, requirements can be further refined and detaiggflirements can be derived
during the analysis and design phases so that requiterspacifications can be
documented. An excerpt of a CVA detailing the comalibypn and variability
requirements for the constellation is shown in Figure 2

A developed and documented CVA during the requiresnealiection phase may
give developers an insight into what roles might pprapriate for the multi-agent
system to be developed. In terms of multi-agent systemeldpment, a CVA may
assist in the identification of possible roles singeaittitions those requirements that
will be found in every future instantiation of a peular role from those requirements
that will only be found in some instantiations of artjcular role. That is, only the
commonality should be investigated for potential ageles since the variability can
be thought of as features that will not be foundvierg role.

The actual identification of appropriate roles fornalti-agent system is not

discussed here. Gaia proposes to identify roles thranghspection of the problem
(via the division of a system into organizations anb-srganizations) [28]. Rather,
we only claim that documenting a multi-agent systemajuirements in a CVA may
aid in confirming the role definition and help etpreliminary role model(s).
The variabilities of the CVA will help define the nation points of the product-line,
multi-agent system. Partitioning the variabilitietisimilar groups (e.g., by similar
required intelligence level) provides the initialjgrements for the variation points of
a system. For example, from Figure 2 we can assigabibiies Vi, Vs and \, as



10 J. Dehlinger and R. R. Lutz

Commonalities

C.. An agent capable of performing cluster allocatipfanning shall be able to
receive/execute commands from other known membfetiseoconstellation at all times
(i.e., during times of degraded system functioglit

C,. An agent capable of performing cluster allocatanning shall be able to know its
current position and velocity increment.

Cs. An agent capable of performing cluster allocat@anning shall be able to change its
current position and velocity increment.

C,4. An agent capable of performing cluster allocagmanning shall be able to move to a
new position.

Variabilities

V. An agent capable of performing cluster allocajienning may be able to have partial
cluster knowledge.

V,. An agent capable of performing cluster allocatmanning may be able to have full
cluster knowledge.

V3. An agent capable of performing cluster allocatd@nning may be able to receive and
accept change in velocity bids from other membersd cluster reconfiguration.

V4. An agent capable of performing cluster allocaptanning may be able to issue a request
to members of the cluster for change in velocitysbi

Vs. An agent capable of performing cluster allocaftemning may be able to issue a move
to new position message to members of the clust@éngl cluster reconfiguration.

Ve. An agent capable of performing cluster allocatmanning may be able to receive a
velocity increment calculation from other membefrthe cluster.

V5. An agent capable of performing cluster allocatiganning may be responsible to
optimize the fuel use of all members of the cluster

Fig. 2. A sample Commonality and Variability Analysis ofetmequirements for the Cluster
Allocation Planner role

belonging to intelligence level 12 since each intisahat it would at least require the
intelligence level of 12 to occur.

Alternative approaches to the CVA in documentingdpat-line requirements and
performing variability analysis include the goalesried [3] or the feature-oriented
[15] approach. Alternatively, the use of domain pplacation expertise may also
suffice in this process. This work exclusively used @¥A as the medium for
variability documentation and analysis because ofuserof the FAST methodology
(in which a CVA is exclusively utilized to documeand analyze variabilities). In
terms of reuse, CVA is superior to either goal-oridraefeature-oriented approaches
since it clearly defines those requirements that kéllfound in every member of a
product line (i.e., commonalities) and those requoéests that will only be found in a
subset of the members of a product line (i.e., vditiasi).

4.2 Analysisand Design Phase

Requirements specifications are documented in two szhelhe Role Schema,
shown in Figure 3, defines a role and the variatiomtp that the role can assume
during its lifetime (e.g., whether it only implenterthe assignments it receives or it
can also assign positions). The Role Variation Pogfte®a, shown in Figure 4,
captures the requirements of a role variation pog#pabilities. Both schemas are



A Product-Line Approach to Promote Asset Reuse uitiMigent Systems 11

Role Schema: Cluster Allocation Planner Schema | D: F32
Description:
Assigns a new cluster configuration bsigising new microsatellite posi-
tions within the cluster. This isndoto equalize fuel use across the cluster.
Variation Points:
14: receive/execute commands [F32-14]
I3: local planning and receive/execudmmands [F32-13]
12: local planning, interaction, partilister-knowledge and receive /
execute commands [F32-12]
I1: cluster-level planning, interactidull cluster-knowledge and
receive/execute commands [F32-11]
Binding Times:
All binding time for the variation poingse at run-time.

Fig. 3. Sample Role Schema for the Cluster Allocation Réamole of TechSat21

slightly modified adaptations of Gaia's Role Schemd. [EBe Role Schema and the
Role Variation Point Schema are both needed toucapthe different levels of
intelligence possible in a role throughout a larggtrithuted, multi-agent system.

During the initial development of a distributed ®yst (the product-line domain
engineering phase of the Family-Oriented Abstract®pecification and Translation
(FAST) product-line methodology [25]), the focus mbst primarily on identifying
the overall requirement specifications of the systiénis later (during the product-line
application engineering phase of FAST) that aatueinbers of the distributed system
can be instantiated with some or all of the requirsestablished earlier. We
consider those initial requirement specificationghia Role Schema and the Role
Variation Point Schema.

To capture the requirement specifications and dootthem in the two schemas,
we use the following procedure:

1. Identify the roles within the system. Each role wiinstitute a new Role Schema
to be created.

2. For each role, provide the role's name, a uniquantifitation and a brief
description of the role in the appropriate fieldstiké Role Schema. We partly
follow the naming and numbering scheme from [19] fug Cluster Allocation
Planner role depicted in Figure 3.

3. For each role, identify and define the differingeitigence levels that the role can
adopt during all envisioned execution scenarios of syem. These differing
intelligence levels will represent the variation gsithat the role can adopt. For
each variation point, fill in the Variation Pointscien of the Role Schema by
including the name, a brief description of the véiatpoint and a reference
identification number to the Role Variation Poirth8ma that gives the detailed
requirements of the variation point (see Step 4a).

4. For each identified variation point (Step 3), ceeat new Role Variation Point
Schema. For each Role Variation Point Schema:

a. Document the name of the role to which the variatiomt corresponds as well
as the name of the variation points in the apprtgpriections of the Role
Variation Point Schema. Indicate the variation paientification tag



12 J. Dehlinger and R. R. Lutz

Role Schema: Cluster Allocation Planner Schema |D: F32-11

Variation Point: 11

Description:
Assigns a new cluster configuration by assigning necrosatellite posi-
tions within the cluster. This is done to equafizel use across the cluste
With the 11 intelligence level, it is able to secidster assignments to other
microsatellites (i.e., spacecraft level agentgjrufer to arrange a new clus|
ter configuration. This may occur when a new nsatellite is added or in
the case of a failure of a microsatellite.

Protocols and Activities:
CalculateDeltaV, UpdateClusterInformafioveNewPos, DeOrbit,
AssignClusterAcceptDeltaVBidsRequestDeltaVBids
SendMoveNewPosMs@endDeOrbitMsg

Permissions:
Reads -
position /I current microsatellposition
velocitylncrement /I current microsatellite velocitychement

suppliednicrosatellitelD  // microsatellite identification number
suppliedelocitylncrment  // microsatellite velocity increment

Changes -

position /I current misatellite position

velocitylncrement /I current microsatellite vellycincrement
Generates -

newPositionList /I new position list to assim the

/I microsatellites within the cluster
Responsibilities:
Liveness -
Optimize the fuel use across thetelu

Safety -

Prevent microsatellite collisiongidg a new cluster configuration.

Fig. 4. Sample Role Variation Point Schema for the I11ataon point of the Cluster Allocation
Planner role of the Cluster Configuration

(corresponding to the variation point identificatim Step 3) in the appropriate
field in the Role Variation Point Schema.

b. Identify the protocols, activities, permissions andpamnsibilities that are
particular to only that variation point. That is,fide the protocols, activities,
permissions and responsibilities that are not found ng af the lower
intelligence level variation points.

c. Document and define the identified protocols, adésit permissions and
responsibilities in the appropriate sections ofRude Variation Point. (Note, in
accordance with the Gaia conventions, activities digtinguished from
protocols by being underlined).

These steps result in a set of Role Schemas that haessaciated set of Role
Variation Point Schemas. Additionally, these stepsifmon to the domain
engineering phase of product-line development [Bgure 3 illustrates a Role
Schema example, and Figure 4 gives an example of@\Rwlation Point Schema,
both derived from the TechSat21 agent specificatiorengn [19].



A Product-Line Approach to Promote Asset Reuse uttiMigent Systems 13

Role Deployment Schema: Cluster Allocation Planner System(s) ID: 2,3, 8-10

Description: A microsatellite member of the TechSat21 consielethat lacks the
intelligence to globally assign new positions they microsatellites within the
cluster during a reconfiguration caused by a négvasatellite joining the
cluster or a failure in one of the microsatellit€se sacrifice of this capability
was chosen in favor of accommodating additiongdrexe instrumentation and
software not found in microsatellites that allalvaind 12 Cluster Allocation
Planning Agent intelligence levels.

Variation Points:

14: receive/execute commands [F32-14]
13: local planning and receive/executmomnds [F32-13]

Fig. 5. Sample Role Deployment Schema for the Clustercalion Planner role of the Cluster
Configuration agent of a member of TechSat21

4.3 Detailed Design Phase

Upon completion of the initial requirements analysisl development of an agent-
based, distributed system, it will be necessary tlizeitthe derived requirements
specifications to instantiate a number of members ofdisigibuted system. During
this initial deployment of distributed members, it is netessary that all members be
equipped with equal capabilities, intelligence ondiiobnality. Since the prior steps
have specified all the possible variation pointstloé roles in the schemas, we
instantiate a new member (i.e., agent) to be addethe distributed system by
specifying each new member to be deployed in thee Raployment Schema. An
example is shown in Figure 5.

Thus, the process is as follows:

1. Identify the roles that will constitute the membebtdeployed.
2. For each role identified, create a new Role Deplaynschema and:

a. Provide the role's name, unique system(s) identiinasind a brief description
of the role specific to this deployment in the appiate fields of the Role
Deployment Schema. The system(s) unique identificatio be placed in the
System ID field, identifies the specific member(s)ra distributed system to be
deployed that has the role configuration describedthe particular Role
Deployment Schema. For example, if members 2,3, 8r&0taa employ the
Cluster Allocation Planning Agent in which only iatfon points 13 and 14 are
possible, we denote this in the System(s) ID fieldth&f Role Deployment
Schema, shown in Figure 5, as 2,3, 8-10. This avoaietitive manual
overhead when designing new members to be deployeitheindistributed
system.

b. Identify all possible variation points that the roEnassume during its lifetime.
The set of possible variation points was previouslybdisteed when the original
Role Schema was developed for the particular role.



14 J. Dehlinger and R. R. Lutz

Cluster Configuration Agent

) Agent
0 0.1 e A
Cluster Reconfiguration Planner Cluster Allocation Planner Cluster Representer Roles
. A T EAYIY N AN
. X ! ; ’ " Variation
Active  Hot-Spare  WarmrSpare  Cold-Spare il 12 13 14 Active Cold-Spare

Points

Fig. 6. A sample Agent Model for the Cluster Configuratidgent for a member of TechSat21.

c. Identify the variation points in which the role lle deployed and specify it in
the Role Deployment Schema. This variation point g the default
intelligence level at which the agent will most coonly operate during normal
operations.

These steps produce a (set of) completed Role Dephty&whemas describing how
different members of the distributed system to be degl@ye instantiated.

We illustrate how an Agent Model, expanded from Algent Model of Gaia [4],
can be derived in Figure 6. The Agent Model graglhidllustrates the assignment of
roles to agents as well as variation points to rolee Tardinality relationship
between agent and role is indicated and all possériation points are listed for each
role. At runtime, the designer annotates the actralicality and the specific possible
variation points of an agent instance.

These steps conform to the application engineerings@bof FAST [25] and
produce the documentation shown in the detailedgdeghase shown in Figure 1.
Documenting the requirements specifications in sugay allows easy reuse when
instantiating actual systems. We detail how the doctatien created in this section
can easily be reused during both initial developnagiot system evolution in the next
section.

5 Multi-Agent Requirements Specification Reuse

Requirements specification reuse is using previoushfindd requirements
specifications from an earlier system and applying thera new, slightly different
system. Increasing the amount of requirements spedficatuse for any given
product will reduce the production time and costhef software system [8].
Requirements specification reuse for agent-basedibditdd systems is simplified
in our approach by our use of variation points todharthe variabilities in similar
software systems. Our approach takes advantage of Hwmw réquirement
specifications for an agent's role were partitionadl @ocumented in the Role Schema
and Role Variation Point Schema based on their t@amiapoints. This section
describes how the requirements specifications docwtientdetailed in Section 4
can be reused during the initial deployment of #&ritisted system as well as during
system evolution. We definsystem evolutionas the updating of an existing
member(s) of a deployed system or the addition of members to the system.



A Product-Line Approach to Promote Asset Reuse uitiMigent Systems 15

5.1 Reguirements Specification Reuse During I nitial Development

The members of a distributed system often will be hetsregus in their functional
capabilities yet mostly similar in structure. For exéangome microsatellites of the
constellation may have additional scientific imagiofware while others may have
additional cluster planning and reconfiguration safev Heterogeneity may also
arise when resources (such as weight limits, memory size), are limited and
different members of a distributed system must assumedidiffeoles. In the case of
agent-based, distributed systems, members also magtbm¢eneous in terms of
their intelligence levels. For example, depending tbe level of coordination
(centralized, distributed or fully distributed, foranple) among agents, not all agents
must support roles at the highest level of inteltige. That is, not all agents may be
capable of having full cluster-knowledge and/omigetapable of making cluster-level
decisions. For this reason, initially deployed members distributed system will
likely contain a role that differs amongst other mersbér terms of which
intelligence levels (i.e., variation points) it is elfe of assuming. Several members
of the distributed system will have the same role bdiffarent levels of intelligence.

Requirements specification reuse can be exploitethglthe initial development
and deployment of the members of a distributed systnguhe Role Deployment
Schema, illustrated in Figure 5. Rather than repdatiefining the requirements of a
role for any given agent, the Role Deployment Schatiows us to define the
intelligence levels it can assume. This reuse is posbibause the requirements
specifications for each of the levels of intelligensere documented in the Role
Variation Point Schemas, and because the agentsditigbuted system will be
similar. Thus, to document a particular role for selvelifferent heterogeneous
members of a distributed system we must only indicatehwmariation points (i.e.,
previously defined intelligence levels) it can asswamné give the reference number(s)
to the Role Variation Point Schemas. After assigniagation points to an instance of
a role and a role to an instance of an agent, anfAlglodel can be used to illustrate
an actual instance of an agent. We provide an ebea&Agent Model in Figure 6.

5.2 Requirements Specification Reuse During System Evolution

Change is inevitable. Hardware failures or alteredsimis goals in a deployed
distributed system typically necessitate software wgsdi@t one or more members. For
example, a satellite of the constellation may haveadfunctioning planning and
control module that could motivate operators to tpdhat particular satellite's
software to erase it and replace it with updated misgtanning software.
Alternatively, technology or mission goals after thiéial deployment of a distributed
system routinely evolve in such a way that future aaplents of members joining the
distributed system will require additional functitita (i.e., new features requiring
new requirements). In the case of the satellite cbastas, designers envision that
new microsatellites will be deployed in multiple, phed phases [7, 22]. The new
microsatellites will likely contain additional feags not found in previously deployed
microsatellites. Examples of the types of evolution ¢bastellation may undergo
include improved sensors, new scientific software, oemmunication devices, etc.



16 J. Dehlinger and R. R. Lutz

When the system evolves, new members may include aditfunctionality not
previously defined in the requirements specificatidrte requirements specification
pattern detailed in Section 4 is extensible in thatan accommodate this kind of
system evolution by being able to include a new setegfiirements while still
reusing the previously documented requirements.

If the system evolution is an update of a member ofdtbibuted system where
the update includes functionality previously defimedhe requirements specifications
(Role Schema and Role Variation Point Schema), iticadfto modify the Role
Deployment Schema and, possibly, the Agent Modetfleat the update.

The addition of a new role within the distributedyent-based system was
described in Section 4.2. Briefly, we create a nedeRSchema and a Role Variation
Point Schema just as during the initial developmehtaomulti-agent system.
Following the creation of a Role Schema and a &§&ate Variation Point Schemas,
the process for the detailed design phase, outlin&gdation 4.3, is used to instantiate
a new agent with the new role.

The addition of a new variation point to an exigtirole, however, requires a
modification to existing Role Schema documentatienvall as the creation of a new
Role Variation Point Schema. For example, the neeatitl a fifth intelligence level
to an existing role would require such modificatidtar a new intelligence level
desired for a particular role in future deploymesftsnembers of a distributed system,
the following process suffices:

1. Create a new Role Variation Point Schema for the mgelligence level (i.e.,
variation point) giving the role's name, variatipoint's name and a unique
variation point identifier in the appropriate fisld

2. Document the variation point indicating how the neaviation point differs from
previously defined variation points in the Descoptsection.

3. Identify the protocols, activities, permissions and oesbilities that are particular
to only that variation point. That is, define thetocols, activities, permissions and
responsibilities that are not found in any of thevdo intelligence level variation
points and that are not found in any other variagioimts.

4. Document and define the identified protocols, adésit permissions and
responsibilities in the appropriate sections of thieR@riation Point.

5. Update the Role Schema to which the new variat@mntpcorresponds, and add the
new variation point, along with a description andesoh reference identification,
to the Variation Points section.

These steps will produce a new variation point fonla and the accompanying Role
Variation Point Schema for future versions of membéth@system.

6 Concluding Remarks

This paper incorporates a product-line approach amoagent-oriented software
engineering methodology to support the reuse of tlegived requirements
specifications of an agent-based, distributed sysfém. requirements specification



A Product-Line Approach to Promote Asset Reuse uitiMigent Systems 17

templates are constructed in such a way that varyngrdic software configurations
of an agent are supported. The benefit is that teatagconfigurations can then be
reused during initial system development and duringpderof system changes and
updates. This can significantly reduce the softwareld@ment time and cost.

To allow for the integration of product-line contgjinto the Gaia methodology,
we modified some of Gaia's schemas to better suit theepts of software product-
line engineering. In this paper we describe how aeR&thema, a Role Variation
Point Schema, a Role Deployment Schema and an Adem¢l can be created using
a product-line approach. Using this approach assistgajturing the shifting
configurations of agents/roles during the requiremeanrtalysis, design, detailed
design and specification phases. Specifically, we ridmschow requirements
specifications reuse can be achieved during inititesn development, during
periods of system changes and updates and during thi®add new members with
previously defined functionality to a deployed,dregeneous, distributed system.

Although this work was specifically intended for usedistributed multi-agent
systems, this work may also be useful for distributedesystthat are not necessarily
agent-based such as sensor networks, grid-computidgajmms and peer-to-peer
applications. Planned future work includes an apgite of this approach to a multi-
agent system under development to evaluate the sciabithis approach.

7 Acknowledgements

This research was supported by the National Scieneend@dion under grants
0204139 and 0205588, and by the lowa Space GramdCium.

References

1. Ardis, M. A. and Weiss, D. M., "Defining Fami#ieThe Commonality AnalysisRroc.
19th Int'l Conf. on Software Engineeringp. 649-650, 1997.

2. Bresciani, P., Giorgini, P., Guinchiglia, F. aPdrini, A., "TROPOS: An Agent-Oriented
Software Development MethodologyJpurnal of Autonomous Agents and Multi-Agent
Systems8(1):203-236, 2004.

3. Castro, J., Kolp, M. and Myopoulos, J. "Towarf@squirements-Driven Information
Systems Engineering: The Tropos Projénformation System27(6):365-389, 2002.

4. Cernuzzi, L., Juan, T., Sterling, L. and ZambignE., "The Gaia Methodology: Basic
Concepts and ExtensiongVlethodologies and Software Engineering for Agerste3ys-
The Agent-Oriented Software Engineering HandbookieSe Multiagent Systems,
Artificial Societies, and Simulated Organizatiph4:69-88, 2004.

5. Chan, K. and Sterling, L., "Specifying Roles hiit Agent-Oriented Software
Engineering” Proc. 18" Asia-Pacific Software Engineering Cardp. 390-395, 2003.

6. Chien, S., Sherwood, R., Tran, D., Cichy, B.piRaau, G., Castano, R., Davies, A.,
Mandl, D., Frye, S., Trout, B., D’Agostino, J., $man, S., Boyer, D., Hayden, S., Sweet,
A. and Christina, S., "Lessons Learned from AutooosSciencecraft ExperimenEroc.
Autonomous Agents and Multi-Agent Systems C2005.

7. Chien, S., Sherwood, R., Rabideau, G., CastBnopPavies, A., Burl, M., Knight, R.,
Stough, T., Roden, J., Zetocha, P., Wainwright, Ruypar, P., Van Gaasbeck, J.,



18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

22.

23.

24.

25.

26.

27.

28.

J. Dehlinger and R. R. Lutz

Cappelaere, P. and Oswald, D., "The Techsat-21 ramous Space Science Agent",
Proc. ' Int’l Conf. on Autonomous Agensp. 570-577, 2002.

Clements, P. and Northrop, Boftware Product Lines: Practices and PatterAddison-
Wesley, Reading, MA, 2002.

Das, S., Krikorian, R. and Truszkowski, W.,isibuted Planning and Scheduling for
Enhancing Spacecraft AutonomyProc. 3¢ Conf. on Autonomous Agentsp. 422-423,
1999.

Dehlinger, J. and Lutz, R. R., "PLFaultCATPfoduct-Line Software Fault Tree Analysis
Tool", The Automated Software Engineering Jourt@lappear.

DelLoach, S. A., "The MaSE MethodologiMethodologies and Software Engineering for
Agent Systems-The Agent-Oriented Software Engimgeétandbook Series: Multiagent
Systems, Atrtificial Societies, and Simulated Orgations 11:107-125, 2004.

Feng, Q and Lutz, R. R., "Bi-Directional Safénalysis of Product Lines"Journal of
Systems and Softwarte appear.

Girardi, R., "Reuse in Agent-based Applicati@velopment'Proc. T Int'l Workshop on
Software Engineering for Large-Scale Multi-Agenst8gns 2002.

Hara, H., Fujita, S. and Sugawara, K., "Rbles&oftware Components Based on an
Agent Model",Proc. Workshop on Parallel and Distributed SysteR@90.

Kang, K. C., Kim, S., Lee, J. and Lee, Kkeature-Oriented Engineering of PBX
Software for Adaptability and Reusability"Software Practice and Experience
29(10):167-177, 1999.

Lutz, R. R., “Extending the Product Family Apach to Support Safe Reusédgurnal of
Systems and Softwarg3(3):207-217, 2000.

Northrop, L., "A Framework for Product Lineaetice", Software Engineering Institute
http://lwww.sei.cmu.edu/productlines/framework.httelyrrent November 2005).
Padmanabhan, P. and Lutz, R. R., "Tool-Supgoiferification of Product Line
Requirements"The Automated Software Engineering Jourid2i(4):447-465, 2005.
Schetter, T., Campbell, M. and Surka, D., 'fiplé Agent-Based Autonomy for Satellite
Constellations"Proc. 2 Int'| Symposium on Agent Systems and Applicatipd8o0.
Sommerville, I.Software EngineeringAddison-Wesley, Reading, MA, 2004.

Sutandiyo, W., Chhetri, M. B., Krishnaswamy,a®d Loke, S. W., "Experiences with
Software Engineering of Mobile Agent Applicationd®roc. 2004 Australian Software
Engineering Conf.pp. 339-349, 2004.

"TechSat21 - Space Missions Using Satellitesters", Space Vehicles Factsheets
http://lwww.cs.afrl.af.mil/ Factsheets/techsat21lh{eurrent February 2005).

Tveit, A., "A Survey of Agent-Oriented SoftweaEngineering"NTNU Computer Science
Graduate Student Con001.

United States Department of Defense, "Draft [Ruftware Technology Strategy”, Office
of the Director, Defense Research & EngineeringABR: December 1991.

Weiss, D. M. and Lai, C. T. RSoftware Product-Line Engineerind\ddison-Wesley,
Reading, MA, 1999.

Wooldridge, M. and Jennings, N. R., "Agent dites, Architectures and Languages: A
Survey",Workshop on Agent Theories, Architecture and Lagggap. 1-32, 1995.
Wooldridge, M., Jennings, N. R. and Kinny, Drhe Gaia Methodology for Agent-
Oriented Analysis and DesignJpurnal of Autonomous Agents and Multi-Agent System
3(3):285-312, 2000.

Zambonelli, F., Jennings, N. R. and Wooldridife, "Developing Multiagent Systems:
The Gaia Methodology’ACM Transactions on Software Engineering and Metigl;,
12(3):317-370, 2003.



