
Mapping Concern Space to Software Architecture:
A Connector-Based Approach

Jing (Janet) Liu
Dept. of Computer Science,

Iowa State University
226 Atanasoff Hall, Ames, IA 50011

+1 (515) 294-2735
janetlj@cs.iastate.edu

Robyn R. Lutz
Dept. of Computer Science,

Iowa State University
226 Atanasoff Hall, Ames, IA 50011

and Jet Propulsion Laboratory/Caltech
+1 (515) 294-3654

rlutz@cs.iastate.edu

Jeffrey M. Thompson
Research & Development

Guidant Corporation
4100 Hamline Ave North,

St. Paul, MN 55112
+1 (651) 582-5739

Jeffrey.Thompson@guidant.com

ABSTRACT
Concern modeling plays an important role in software design,
implementation and maintenance. Hyperspace has provided a
strong conceptual framework to separate concerns in multi-
dimensional levels. The contribution of this work is to create an
architectural element, called a concern connector, to support the
implementation of hyperspace in the architectural design phase.
The paper makes three basic claims for this idea. First, using
concern connectors allows the scope of each hyperslice in a
certain concern dimension to be defined and stored. Second, the
concern interactions within each hypermodule can be specified in
the concern connectors. Third, the association of concern
modeling with this distinctive architectural element improves the
flexibility of concern maintenance and evolution during the
development process. To test these claims the paper investigates
the use of concern connectors in a real-world architectural model.
The results show how concern connectors implement concern
modeling in the architectural design.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and interfaces,
Object-oriented design methods; D.2.11 [Software Architecture]:
Languages, Patterns

General Terms
Design, Languages.

Keywords
Hyperspace, Software Connector, Aspect, Feature Interaction.

1. INTRODUCTION
Concern spaces provide guidance to software engineers in

handling system modularization in both design and
implementation phases; they also give a good reference for
maintenance and evolution [16]. Concerns are defined to be
“those interests which pertain to the system’s development, its
operation or any other aspects that are critical or otherwise
important to one or more stakeholders” [5]. An example of a
concern is data integrity. A concern space describes the idea of
separating and segregating the set of currently considered
concerns over the set of units that constitute the software in the
domain of discourse [16].

The work described here builds on Hyperspace [11], a general
conceptual framework for multi-dimensional separation of
concerns. Hyperspace is a concern space with a well-defined
multi-dimensional structure, as described in Section 3.
Our research is motivated by the need to separate and model
concerns in large software systems, especially in safety critical
product lines. For safety-critical systems, maintenance and
verification of cross-cutting concerns are essential. Product lines
must also support the addition of new features. For example, a
product line consisting of several different pacemakers and
defibrillators might add a new feature to let doctors view
parameters remotely.

To address these issues, this paper introduces a specialized
connector, called a concern connector, to define the scope of
separated concern pieces in the architectural design. A concern
connector is an architectural element that specifies the scope of
concerns in the architectural design phase. We show how the
Hyperspace approach can be mapped into the architectural design,
specifically, how hyperslices [11] can be modeled and presented
using the concern connectors. We also show how to integrate a set
of hyperslices to form a hypermodule [11] using concern
connectors. The integration is not simply a hierarchy of concern
connectors but rather a new concern connector with the scope and
the interactions (the correspondence relationships among
hyperslices) explicitly specified. The paper also discusses how
concern connectors support adding new features to a product line,
performing on-going safety analysis, and using aspect oriented
programming.

The contribution of our work is two-fold. First, concern
connectors extend the modeling ability of the architecture model
from traditional architectural concerns to multiple concerns with a
focus on safety. Second, concern connectors help bridge the gap

between concern modeling and aspect oriented programming
(AOP) in large systems so that the work of concern separation and
identification can be largely preserved in the architecture design.
Consequently concern connectors help guide subsequent
implementation and maintenance.
The rest of the paper is organized as follows. Section 2 addresses
related work and introduces an industrial application. Section 3
gives the definition and overview of concern connector. Section 4
describes the connector-based approach, including the hyperslice
and hypermodule modeling in the architecture. Section 5
discusses the implications of concern connectors for concern
maintenance and evolution. Section 6 provides a brief conclusion.

2. RELATED WORK & APPLICATION
The work described here is a natural extension of the architectural
connector notion supporting the realization of Hyperspace [11] in
the architectural domain. Similar work includes Hyper/J [13],
which implements the Hyperspace notion in the code level in Java;
ConcernBASE [3], which extends UML to realize viewpoint
language to describe concern space, extending that to SADL(the
Structural Architectural Description Language); Hyper/UML [14],
which maps Hyperspace into different UML elements to be used
in the feature modeling in the model based development;
Theme/UML[2], which captures separated concerns through UML
design model encapsulation and composition; Dynamic
Hyperspaces [1], which uses connectors for hyperslice
composition to provide a dynamic view of Hyperspace; the
Hyperspace generalization using meta-models [9], which
generalizes the Hyperspace notion to support artifact language in
UML; and modeling crosscutting concerns using software
connectors [7], which provides UML support for a connector to
model component interactions, as well as architectural concerns
that crosscut the boundaries of components.

Our approach differs from these studies in that we use the
specialized architectural element, concern connector, to define
and maintain the scope of a hyperslice (piece of concern), and to
support the integration of hyperslices. The connector specification
is general enough to be extended to any specific architectural
description language. Another difference is that the concern
connector provides a systematic and scalable way to allow the
AOP referencing of any part in a large system.

The running example in the paper is the software architecture of a
defibrillator product line. A defibrillator is an embeddable
medical device designed to monitor and regulate the beating of
the heart when the heart is not pacing at a normal rate. Its major
functions include detecting abnormal cardiac rhythms (including
tachycardia and bradycardia, which are fast and slow abnormal
heart beats, respectively), and applying therapies (e.g., stimulating
the heart with an electrical pulse or shock). The therapies are
applied to two chambers of the heart: ventricle and atrium [4].

Within this domain, concerns typically capture a wide variety of
features and required properties of interest. Here we use two
safety-related concerns to motivate and explain our method:

(1) Tachycardia therapy (for a fast heartbeat) in the ventricle
(called ventricular tachycardia therapy) should always have
priority over tachycardia therapy in the atrium (called atrial
tachycardia therapy)

The rationale behind this safety concern is that, because the
ventricles supply approximately 80% of the circulatory capacity,
ventricular tachycardia is more life-threatening than atrial
tachycardia. Thus, ventricular tachycardia must always have
priority.

(2) In bradycardia therapy (for a slow heartbeat), the
defibrillator should always give a pulse to the heart when no
heartbeat is detected during a certain time interval.

The rationale behind this safety concern is that when the heart has
bradycardia symptoms, the lack of heartbeat for a certain period is
life threatening and thus should be treated with an electrical pulse.

The two concerns are so important that they need to be captured
and maintained through different development phases. They are
also both cross-cutting in nature in that they can affect several
blocks in the architecture, as described below.

3. CONCERN CONNECTOR
In order to capture and maintain the concerns in a software
architecture, we define the notion of concern connector. The
template in Table 1 details the information that should be
provided for each concern connector. Section 4 describes an
example.

The architectural part of this approach is based on the following
essential features of a software architecture description language
(ADL): components (including the interfaces), connectors and
configurations [15]. An architectural configuration is a connected
graph of components and connectors describing architectural
organization. We denote each component, lower-level sub-
component, or higher level subsystem in such an ADL as an
architectural block.

Table 1. The general concern connector representation.

Concern
description

The specific concern it is capturing

Implementa-
tion Set

The set of architectural block(s) whose
interactions are relevant to the current
concern and their sub-blocks that directly
receive the inputs or produce the outputs
involved in this interaction.

Interface
Set

The set of architectural block(s) that provide
inputs to the block(s) in the implementation
set. These architectural blocks are specified
as concern_connector_name.block_name if
they refer to another concern connector.

Rules

i) The interactions of the blocks and sub-
blocks in the Implementation Set if the
interaction is under the current concern

ii) The constraints on the blocks that are
connected by multiple concern connectors

Rules
Enforcement

The places to enforce the rules. When not
implemented, it serves to record the scope
related to certain concern(s); once the rules
are implemented, the units affected by the
current concern register themselves here for
possible future maintenance updates.

We next give a brief overview of the Hyperspace framework.
Hyperspace’s approach [12] divides concerns into a set of disjoint
groups, each of which is called a dimension of concern. The
modeling pieces in a Hyperspace are hyperslices and
hypermodules. A hyperslice collects all the units that address the
same concern. Hyperslice are declarative complete in that they
“declare everything to which they refer” [11]. A hypermodule
provides the context for a set of interacting hyperslices to be
integrated by means of a set of composition rules (that specify
how they correspond to each other) [11]. Thus, a hypermodule
addresses multiple concerns and can form a natural building block
for the software system. (Note that in this paper we do not
consider concerns that are hard to measure via architectural
blocks, such as “time to market”.)

4. MAPPING CONCERN SPACE TO
SOFTWARE ARCHITECTURE
The units in the Hyperspace definition are essentially the
architectural blocks in the architectural structure. Our focus is on
mapping the existing concern space into the architectural model.

4.1 Mapping Hyperslices
We first show that the union set of the Implementation set and the
Interface set in a concern connector can capture all the units
related to that concern and is declarative complete, thus forming a
hyperslice addressing that concern.

Figure 1. The architectural configuration of the Defibrillator

core.
To demonstrate this claim, we first look at what needs to be in a
hyperslice for a concern, namely the units that encapsulate that
concern. Thus, those blocks whose interactions are contained in
the current concern, as well as the sub-blocks of those blocks that
either receive the inputs or produce the outputs involved in this
interaction, should be included, since they are all part of the

implementation of the current concern. This set is defined in the
Implementation Set in the concern connector.

Table 2. The concern connector defining hyperslice (1).

Concern
Description

Tachycardia therapy in the ventricle should
always have priority over tachycardia
therapy in the atrium

Implement-
ation Set

Tachycardia Therapy(A-Tachycardia
Therapy(Detection, Therapy Selection), V-
Tachycardia Therapy(Detection, Therapy
Selection))

Interface Set Therapy Selection

Rules

When the Therapy Selection block selects
Tachycardia Therapy, the Tachycardia
Therapy block uses V-Tachycardia Therapy
sub-block’s output unless it has no output, in
which case it uses A-Tachycardia Therapy
sub-block’s output

Rules
Enforcement

Should be implemented as a new connector
to arbitrate between A-Tachycardia Therapy
and V-Tachycardia Therapy

According to the definition of declarative completeness,
hyperslices “must declare everything to which they refer” [11]. In
an architectural configuration, these blocks are the ones that
invoke the blocks in the Implementation Set. In other words, since
their output provide input to the blocks in the Implementation Set,
they form the Interface Set in the concern connector. Since we are
not concerned at this point with their internal structures, they are
referenced as concern_connector_name.block_name (if they are
included in the Implementation Set of another concern connector),
or simply as block_name. In the latter case these units should
update to the form of concern_connector_name.block_name once
they are included by another concern connector.
Note that the blocks that are influenced by the outputs of the
blocks in the current Implementation Set are not included, as they
do not contribute to the current concern. Similarly, those blocks
that provide input to the blocks in the Interface Set are not
explicitly included, as they are implicitly included when we refer
to the concern connector in which they are defined in their
Interface Set.

Table 3. The concern connector representing hyperslice (2).

Concern
Description

In Bradycardia Therapy, the defibrillator
should always give a pulse to the heart when
there is no heartbeat detected for a certain
interval of time.

Implement-
ation Set

Energy Delivery(Pulse Delivery, Timer),
Bradycardia Therapy

Interface Set user input, Therapy Selection

Rules

When in Bradycardia Therapy, if Timer
timeouts while Bradycardia Therapy block
has not detected any heartbeat, Pulse
Delivery should give pulse

Rules
Enforcement

Should be implemented by a controller
component in Energy Delivery

Energy Delivery

Pulse Delivery

Shock Delivery

Therapy
Selection

V-Tachycardia
Therapy A-Tachycardia Therapy

Detection

Therapy
Selection

Log

Tachycardia Therapy

Bradycardia
Therapy

hs2

hs1

Timer

user
input

Detection

Therapy
Selection

Log

Furthermore, a concern connector provides the rules that the units
must satisfy when they merge under the same concern. In this
way the concern connector captures the information needed to
define a hyperslice. Note that the rules here are specified
informally. However, in practice, formal logics or organization-
specific languages are used.
To better describe the workings of a concern connector, we use a
simplified architectural configuration describing the defibrillator
core (see Fig. 1). (The “user input” is referencing some other
part of the system not shown in this graph, such as the GUI.)
Table 2 shows the concern connector for the first hyperslice of
concern labeled as (1) in Section 2. (Note that “Log” is not
included because it does not directly receive inputs in this
interaction.)
The architectural representation of this concern connector is
shown as a square labeled “hs1” in Tachycardia Detection at the
bottom left of Fig. 1. It will become a real architectural
component or connector once implemented.

Table 4. A general Hypermodule modeling scheme.

Concern
Description

Subset of the concerns modeled in the sub-
slice concern connectors

Implement-
ation Set

The union of the Implementation Sets of the
concern connectors of the hyperslices

Interface Set

The union of the Interface Sets of the
concern connectors of the hyperslices
excluding the Implementation Set of this
hypermodule

Rules

1) When the Implementation Set of any of
the hyperslices overlap:
i) if the concerns are mutually exclusive,
specify when to shift from one to the other
ii) if there are contentions among concerns,
specify the priority among them;
iii) specify any dependencies among
concerns;
else, apply “merge” relations to simply
integrate those concerns on the units;
2) If the Implementation set of some
hyperslices overlap with the Interface set of
other sub-slices, specify the “binding”
relation between them: the units in the
Implementation set should fulfill the
requirements for the same units in the
Interface set; no contention nor mutual
exclusion should ever occur.

Rules
Enforcement

Should be realized in the overlapping blocks
specified above.

Table 3 shows the concern connector for the second hyperslice of
concern labeled as (2) in Section 2. (“Shock Delivery” is not
included because it does not directly receive inputs in their
interaction.) The architectural representation of the concern
connector is again a square, here labeled “hs2” in the Energy
Delivery.

4.2 Mapping Hypermodules
The way to map a hypermodule into the architecture is very
similar to the way in which a hyperslice is mapped into the
architecture. Essentially, a hypermodule is a higher-level
hyperslice that addresses part or all of the concerns from the
hyperslices constituting it [13]. We illustrate the general form of
this representation in Table 4.
When modeling hypermodules, the concern connector captures
the concern interactions within each hypermodule by
systematically integrating the connectors representing the
hyperslices constituting it. The rules specified in the table are
based on some of the correspondence relationships in [11]. Other
rules to explore for hyperslice integrations include those in [16].

5. MAINTAINING CONCERN
INFORMATION AS THE SYSTEM
EVOLVES
We here briefly sketch two benefits of concern connectors beyond
the design phase: to map to aspects and to support product-line
evolution.
One application of concern maintenance is mapping concern
connectors to aspects in aspect oriented programming (AOP). The
work in [6] has already described the mapping of general
connectors to pointcuts and advice in AspectJ [8]. Table 5 gives a
simple example of how a concern connector can be mapped to
elements of AspectJ. (The example is shown in an abstract
manner).
The location of the concern connector suggests when an aspect
should be introduced. The concern connector also allows an easier
and more natural derivation of aspects. Each concern connector
for hyperslices can map to a single aspect because each addresses
one concern. The concern connector for hypermodules may need
to be divided into multiple aspects, each of which addresses one
or more rules within it.
Concern connectors preserve concern information not only for
AOP or the programming phase, but also for other system tasks
such as static testing or safety analysis. By maintaining the scope
in each connector we can more easily select an appropriate and
consistent scope for a model checker to verify. Since each
connector maps a hyperslice which is declarative complete, the
derived model will also be declarative complete. In addition, the
rules specified in each connector can be mapped to formal
properties.

Since the concern connector serves as a fixed architectural
element providing information about where and how to enforce
the rules regarding one concern (hyperslice) or a group of
concerns (hypermodule), it is helpful in concern maintenance and
evolution, especially in product lines.
The advantage of concern connectors for product lines is that
product-line features (e.g., optional variations) can be treated as
concerns. Known feature interactions may also be resolvable by
the rules specified in the concern connectors. For example, to find
the interaction of a new concern with an existing concern we
build the hypermodule of the two, as shown in Table 4.
Comparison of their Implementation Sets and Interface Sets helps
find interactions of the new concern with existing concerns.
Similarly, if a concern (or feature) is deleted, reference to the

Implementation Set of its concern connector and to the blocks
shown in the Rules Enforcement helps identify the affected units.
We anticipate that concern connectors will also assist us in our
safety analysis of evolving product lines. First, connectors
maintain a clearly defined scope for the safety concerns. Second,
the “Rule Enforcement” specification for concerns captures
design safeguards that need to be maintained even as the systems
change.

The recommendation in [11] that “when new units are added, they
must be added in hyperslices”, here translates into a
recommendation that when new architecture blocks are added,
they should be connected to some concern connector.

Table 5. Mapping the concern connector of concern (1) into
an aspect.

Concern Connector AOP

Implementation Set:
Tachycardia Therapy(A-

Tachycardia
Therapy(Detection,

Therapy Selection), V-
Tachycardia

Therapy(Detection,
Therapy Selection))

To capture all the message passing
in the Implementation Set, we use
cflow() pointcut[8] to capture a
chain of messages (one invokes the
other), or use call() pointcut to
capture a single message, e..g.,
cflow(call(V_Tachycardia_Detecti
on.output)) denotes all messages
involved in the
Tachycardia_Detection block’s
output

Interface Set: Therapy
Selection

Since Therapy Selection is the
output of interest, we model it in
an args() pointcut, e.g.,
args(Therapy_Selection)

Rules: When Therapy
Selection block selects
Tachycardia Therapy,

the Tachycardia Therapy
block uses the output
from V-Tachycardia

Therapy’s sub-block’s;
in the case that it has no

output, the block uses
the output from A-

Tachycardia Therapy’s
sub-block

Use around advice [8]; try to
proceed with V-Tachycardia
Detection’s output; if there is a
null exception, proceed with A-
Tachycardia Detection’s output
instead

Rules Enforcement:
should be implemented
as a new connector to
arbitrate between A-
Tachycardia Therapy
and V-Tachycardia

Therapy

The scope of influence of this
aspect should be the classes in the
package of A-Tachycardia Therapy
and the package of V-Tachycardia
Therapy

6. CONCLUSION
This paper defined a concern connector to assist in mapping
concern spaces into an architectural design. The paper showed
how concern connectors modeled both the scope of hyperslices
and the concern interactions within hypermodules. An application
to a real-world embeddable medical device illustrated the use of
concern connectors. Finally, the paper discussed the advantages

of concern connectors for maintaining concern information as
systems evolve. This is especially important in safety-critical
product lines such as the application described here.

7. ACKNOWLEDGEMENT
This research was supported by the National Science Foundation
under grants 0204139 and 0205588.

8. REFERENCES
[1] Chitchyan, R., and Sommerville, I. Composing Dynamic

Hyperslices. Workshop on Correctness of Model-based
Software Composition (ECOOP 2003).

[2] Clarke, S. and Walker, R. J. Towards a Standard Design
Language for AOSD. Proc. 1st Int’l Conf. Aspect-Oriented
Soft. Dev.. Enschede, The Netherlands, 2002, 113-119.

[3] Crettaz, V., Kandé, M. M., Sendall, S., and Strohmeier, A.
Integrating the ConcernBASE Approach with SADL. UML
2001. 166-181.

[4] Ellenbogen, K.A. and Wood M.A. Cardiac Pacing and ICDs:
3rd Edition. Blackwell Science, 2002, 415-424.

[5] IEEE Architecture Working Group. IEEE Recommended
Practice for Architectural Description of Software-Intensive
Systems. IEEE Std 1471-2000, IEEE, 2000.

[6] Kandé, M. M., Kienzle, J., and Strohmeier, A. From AOP to
UML: Towards an Aspect-Oriented Architectural Modeling
Approach. TR 200258. Swiss Fed. Ins. Tech., 2002.

[7] Kandé, M. M., and Strohmeier, A. Modeling Crosscutting
Concerns using Software Connectors. ASoC3. Tampa Bay,
Florida, 2001.

[8] Laddad, R. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning publications, 2004.

[9] Lohmann, D., and Ebert, J., A Generalization of Hyperspace
Approach Using Meta-Models. The 2003 AOSD Early
Aspects Workshop (AOSD-EAWS'03). Boston, MA.

[10] Mehta, N. R., Medvidovic, N., and Phadke, S., Towards a
Taxonomy of Software Connectors. Proc. ICSE 2000.
Limerick, Ireland, 2000, 178-187.

[11] Ossher, H., Tarr, P. Research Report: Multi-Dimensional
Separation of Concerns in Hyperspace. IBM Research
Report 21452(96717), 1999.

[12] Ossher H., Tarr, P. Multi-Dimensional Separation of
Concerns and the Hyperspace Approach. Proc. Symp. Sw.
Arch. & Component Technology, 2000.

[13] Pekilis, B. R. Multi-Dimensional Separation of Concerns
and IBM Hyper/J. TR., Bell Canada Software Reliability
Laboratory, U. of Waterloo, 2002.

[14] Philippow, I., Riebisch, M., and Boellert, K. The
Hyper/UML Approach for Feature Based Software Design.
The 4th AOSD Modeling with UML Workshop. SF, CA, 2003.

[15] Shaw, M. and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall, 1996.

[16] Sutton, S.M., and Rouvellou, I. Modeling of Software
Concerns in Cosmos. Proc. 1st Int’l Conf. Aspect-Oriented
Soft. Dev.. Enschede, The Netherlands, 2002, 127-133.

