
 
 
 

Using Defect Reports to Build Requirements Knowledge in Product Lines 
 

Robyn Lutz 
Jet Propulsion Lab/California Institute of 

Technology & Iowa State University 
 rlutz@cs.iastate.edu 

 

Nicolas Rouquette 
Jet Propulsion Lab/California Institute of 

Technology 
nicolas.rouquette@jpl.nasa.gov  

 
 

 
Abstract 

 
      In a recent study of a product line, we found that 
the defect reports both (1) captured new 
requirements information and (2) implicated 
undocumented, tacit requirements information in the 
occurrence of the defects. We report four types of 
requirements knowledge revealed by software defect 
reports from integration and system testing for two 
products in this high-dependability product line. We 
argue that store-and-retrieve-based requirements 
management is insufficient to avoid recurrence of 
these types of defects on upcoming members of the 
product line. We then propose the use of two 
mechanisms not traditionally associated with 
requirements management, one formal and one 
informal, to improve communication of these types of 
requirements knowledge to developers of future 
products in the product line. We show how the two 
proposed mechanisms, namely feature models 
extended with assumption specifications (formal) and 
structured anecdotes of paradigmatic product-line 
defects (informal), can together improve propagation 
of the requirements knowledge exposed by these 
defects to future products in the product line.  
 
1. Introduction 
 

Product line engineering has achieved a high 
measure of success based on its achievement of 
systematic reuse of product-line assets for a family of 
similar products as indicated, e.g., by the hall of fame 
for product lines [30]. The cost advantages of 
adopting a product-line approach have been widely 
reported [23, 31].   Claims of higher quality are 
harder to demonstrate but appear to have merit [17, 
31].   As the product line matures, the developers’ 
increasing familiarity with the set of product line 

artifacts and their growing understanding of the 
product-line domain assist in the construction of 
high-quality products.   With careful management, 
requirements knowledge in a product line thus 
promises to be both incremental and cumulative.  We 
are interested in how this requirements knowledge 
can be used to prevent requirements-related defects in 
product lines.  

The development of a product line is typically 
divided into two phases, Domain Engineering and 
Application Engineering. In the first phase, Domain 
Engineering, the product-line assets are developed.  
The most important of these are the software 
requirements, the shared software architecture, and 
the reusable components and test suites. The 
requirements are defined by means of a Commonality 
and Variability Analysis that identifies the common 
requirements, called commonalities, that are shared 
by all members of the product line and the variable 
requirements, called variabilities, that distinguish 
among the members of the product line.  Variabilities 
are optional or alternative features that some but not 
all products have.  In the second phase, Application 
Engineering, the product line assets, such as a 
common architecture and shared requirements, are 
reused to build each new system in that product line. 

In the work described here we are concerned with 
a product line of flight software for spacecraft, 
previously used on seven missions managed by Jet 
Propulsion Lab with two more missions in 
development.  An example of a commonality from 
that domain is that all spacecraft have software fault 
protection to respond to power loss. An example of a 
variability is that the choice of reaction wheels used 
to control spacecraft attitude (i.e., position) differs 
among the products. 

This paper describes an effort to use defect reports 
from previous product-line members to improve the 
quality of future product-line members by reducing 



their requirements-related defects. The motivation is 
that in order to achieve the promise of higher quality 
offered by a product line approach, we need to avoid 
repeating in future products the mistakes made in 
previous products or similar variations thereof.  

However, we show that the requirements 
knowledge available in defect reports of previous 
product-line members goes far beyond simply 
avoiding similar mistakes in the future.   Capture of 
tacit requirements knowledge implicated in such 
reports supports incremental improvement of the 
product line as described below.  To this end, we 
hope to add defect reports as another key product-line 
asset.  

We focus on requirements-related defect reports 
because those have been shown to be the most vexing 
in terms of being difficult to preclude and having a 
major impact on dependability [16].  This is primarily 
because requirements-related defect reports often 
involve missing or incorrect requirements mandated 
by new knowledge about the environment or about 
subtle interactions (often timing-related or resource 
dependencies) among the subsystems.  

This paper reports results from an analysis of 
defects reported during integration and testing for 
two earlier members of a spacecraft flight software 
product line to uncover tacit requirements knowledge 
for the benefit of an upcoming member spacecraft.  
Our analysis suggests opportunities for the defect 
reports to serve as a richer source of information for 
mining tacit requirements knowledge for future 
product-line members.  Although this data is 
available, its role in the product line is yet to be 
defined.   Due to the project-based organization, the 
focus has been on avoiding recurrence of defects on 
the current project (i.e., product-line member) rather 
than on using this knowledge to improve future 
projects (i.e., future product-line members).    

To the best of our knowledge, this work represents 
the first attempt at using defect analysis to 
incrementally improve the requirements knowledge 
for a product line.  There have been multiple efforts 
to use defect reports to measure quality (e.g., bugs 
remaining) [7,21], improve the organization’s 
development process [4,14,16,26], and predict future 
fault occurrences [2, 15], but these efforts have not 
been in a product line setting.   

What makes the defect analysis of prior systems 
potentially even more useful in a product line setting 
is that the defect patterns evidenced in previous 
systems are more likely to be similar to those in 
future systems because of the high degree of 
commonality among the product-line members’ 
requirements, the structured reuse of the product-line 
artifacts, and the shared domain.  By capturing the 

missing or tacit requirements knowledge in early 
systems, we seek to reduce requirements-related 
defects on later systems.  We use Kruchten, Lago and 
van Vliet’s definition of tacit knowledge as 
knowledge that is essential but not documented [12]. 
Because historically it has been the requirements-
related defects (e.g., missing requirements, incorrect 
requirements, or misunderstood requirements) that 
have caused the most problems in terms of time-
consuming debugging and non-localized fixes, the 
future product-line projects have encouraged this 
investigation and helped out with additional domain 
expertise.  

In pursuing this investigation, we face two 
challenges:  
• How to capture relevant product-line 

requirements knowledge from the defect reports.  
This involves acquiring access to members’ 
defect reports from previous product-line 
applications (non-trivial, as some of these 
belonged to other organizations), analyzing them 
and deciding how to filter out information that 
was not relevant to future products (e.g., one-
time variations).  We describe below how we 
identify relevant defect reports and how we use 
Orthogonal Defect Classification (ODC) [2] to 
identify requirements-related patterns in the 
defect data.   We also describe an extension to 
the feature model to model tacit assumptions.  

• How to pro-actively communicate the new 
requirements-related information to developers 
of future product-line members.  Initially, we 
concentrated on determining how to specify and 
store the information so that it could be retrieved 
readily by future projects.  However, after 
reviewing our preliminary results with a domain 
expert with many years of project experience 
[24], we realized that making the requirements 
knowledge available to future product-line 
developers took us only halfway towards our 
objective of propagating information onward to 
other product-line systems.   

   It is insufficient to specify the findings so as 
to enable retrieval of the defects-learned 
requirements knowledge by future developers (a 
“pull” mechanism for querying stored 
information). In addition, it is necessary to 
provide a “push” mechanism so that the 
requirements knowledge that could have 
prevented the defects in previous product-line 
applications will be remembered in future 
product-line applications.  

   We introduce below the concept of a 
Product-Line Analysis Defect Paradigm (PLA-



DP) (extending Petroski’s design paradigm [22]) 
to propagate forward requirements knowledge 
gained through product-line analysis of recurring 
patterns of requirements-related defects.  
Essentially, we identify a small set of 
representative anecdotes where a serious defect 
involving a failure or near-miss occurred that 
could have been prevented by additional (but 
usually unavailable at the time) requirements 
knowledge, where that knowledge also will be 
needed by future product-line members. 

  This anecdotal approach to “remembering old 
lessons learned” (as the domain expert put it) is 
compatible with the culture of an organization 
such as ours that builds high-dependability 
systems.  Moreover, the unfolding of 
requirements-related contributing causes in such 
anecdotes is often a gripping reminder to the 
developers of subtle interactions and 
dependencies of the software requirements on 
hardware idiosyncrasies and environmental rare 
events.    

Addressing the first challenge involves a domain-
engineering activity to incorporate defect reports 
from previous products into the set of product-line 
assets. Addressing the second challenge involves an 
application-engineering activity to make it easy to 
reuse the defect-report information for the next 
product in the product line.   We hope that this 
combination of “pull” mechanisms (storing and 
querying defect reports as product-line assets) and 
“push” mechanisms (telling stories via PLA-DPs) 
will help improve the management of requirements 
knowledge derived from defect reports in product 
lines.  

Analysis of the defect reports generated during 
integration and system testing for the earlier product-
line members showed four types of new requirements 
knowledge that will be needed by future members of 
the product line.  Each is described in more detail in 
Section 4.  
1. Newly discovered requirements. These defect 

reports from testing described missing or 
incomplete requirements that will also be 
essential for some future systems in the product 
line.  

2. Unexpected requirements dependencies. A 
closely related knowledge type was the 
uncovering during testing of unexpected 
dependencies among existing variability 
requirements. This information about 
requirements dependencies should be provided 
for future systems in the product line to avoid 
recurrence.   

3. Tacit requirements rationales.  Undocumented 
rationales to justify requirements’ decisions 
contributed to problems during testing.  
Developers of future systems in the product line 
need this understanding, especially to avoid 
unintended impacts of changing requirements.    

4. Misunderstood requirements.  These defect 
reports described requirements-related 
information that had confused the developer or 
the tester, e.g., because it was ambiguous. 
Requirements-related information that confuses 
developers on one product in the product line, if 
not clarified, can confuse developers on 
subsequent products in the product line.   

It is these four types of requirements information, 
revealed by the defect reports of application-
engineered instances of the product line, that we seek 
to incorporate into the domain-engineered product-
line assets. Enabling improved reuse of the new 
requirements knowledge gained during integration 
and system testing across the product line is the goal 
of the investigation.   

The remainder of the paper is organized as 
follows.  Section 2 briefly describes the spacecraft 
application.  Section 3 describes the approach used to 
analyze the requirements-related testing defect 
reports.  Section 4 presents two mechanisms to 
improve communication of these types of 
requirements knowledge to developers of future 
products in the product line. Section 5 puts the results 
in the context of recent, related work. Section 6 
provides concluding remarks.    
 
2. Application  
 

 We briefly describe three of the spacecraft using 
the flight software product line to provide needed 
background.  The GRAIL (Gravity Recovery & 
Interior Laboratory) project will launch twin 
spacecraft in 2011 to perform gravity mapping of the 
moon (Figure 1).  GRAIL has approximately 3,000 
low-level software requirements textually 
documented in the DOORS requirements 
management toolset. Lockheed Martin will supply 
the flight software. The flight software on GRAIL is 
the most recent instance of a successful Lockheed 
Martin (LM) software product line. The product-line 
assets include the core flight software modules.   

 GRAIL plans significant reuse of the MRO (Mars 
Reconnaissance Orbiter) flight software, a previous 
instance of the LM product line.   MRO launched in 
2005 and is currently orbiting Mars on a five-year 
mission. We analyzed software defect reports from 
MRO and from an earlier spacecraft in the flight 



software product line, Mars Odyssey (ODY). ODY 
launched in 2001 and is currently operational on an 
extended science mission. It is also well known for 
its role in conveying transmissions from the two 
Martian rovers to Earth.   
 

 
Figure 1. GRAIL (courtesy JPL) 

 
3. Analysis 
 

Our analysis approach is based on an on-going 
effort to learn from previous product-line anomalies 
how to improve each new product-line application 
(such as GRAIL). The intent is to feed-forward 
insights and concerns from systematic study of the 
MRO and ODY defect reports to the GRAIL project. 
The underlying intuition is that the bug-report 
database for previous members of the flight-software 
product line captures experience with the product-
line code that we can build on to ensure that with 
software product-line reuse comes enhanced software 
quality and a reduction in defects during integration 
and system testing of subsequent product-line 
members.   

Figure 2 shows an overview of this process. On 
the left we see a sequence of spacecraft in the product 
line going from top to bottom down the page.   The 
curved arrows show that each inherits the shared 
(common) software base.   In the middle, the 
horizontal arrows show how each of these projects 
produces a set of Problem/Failure Reports (PFRs) 
that is recorded in the problem-reporting database.   
The dotted line focuses in on MRO and GRAIL.   
The curved arrow on the right-hand side of the figure 
represents our goal:  to build requirements knowledge 
from defect reports for previous product-line 
members (MRO and ODY) in order to reduce defects 
on the new product-line member (GRAIL).  

The dataset for the analysis consisted of the 69 
MRO and 24 ODY PFRs classified as flight 
software-related in the JPL problem-reporting 

database.  The on-line PFRs filled out by the project 
consist of three parts. The first part describes the 
problem and is filled out by the tester when the 
problem occurs. The second part is filled out by 
the analyst assigned to investigate the problem. 
The third part is filled in later with a description of 
the corrective action that was taken to close out the 
problem. 

 
 

 Figure 2. Product-line approach to building   
requirements knowledge from defect reports  
 

We analyzed the MRO and ODY PFRs using a 
variation of ODC (Orthogonal Defect Classification) 
[2]. ODC is a technique that we have previously used 
to analyze both PFRs and post-launch anomalies on 
spacecraft [18].  It provides a way to "extract 
signatures from defects" [2] and to correlate the 
defects to attributes of the development process. ODC 
differs from causal analysis, another widely used 
defect-analysis technique, which instead does a 
manual, in-depth search for root cause, usually of a 
subset of defects.  

We wrote a script to extract the relevant fields 
from the PFR database and to format the information 
for ODC analysis.  The approach used four attributes 
to characterize each PFR: Cause, Target, Problem 
Type, and Subsystem. The Cause was extracted from 
the PFR cause field, e.g., “Software design” or 
“Support equipment (software)”. The Target 
described the entity that was fixed or changed to 
avoid the problem in the future.  It was extracted 
from the PFR disposition field.  The Problem Type 
characterized the fix. It was manually classified from 
the textual description of the problem/failure in the 
PFR form, e.g., “algorithm” or “timing”.   We also 
extracted and recorded the MRO subsystem for 



which the fix/change was made, as well as some 
other information to help with follow-on analyses. 

  The tall bars at the back of Figure 3 show 
Algorithms as the most frequent PFR problem for 
flight software (totaling 34), followed by 
Configuration PFRs (11),  Hardware Design PFRs 
(8), and Timing PFRs (7) in bars near the foreground 
of the figure.  Requirements-related PFRs are 
common, but Requirements was rarely selected as the 
primary cause once code existed. Thus, although no 
PFRs on MRO and only 6 PFRs on ODY had 
Requirements listed as their Cause, we will see that 
many of the algorithm and timing problems did, in 
fact, have tacit requirements were implicated in the 
problems. 

To build requirements knowledge across the 
product line, the requirements-related information 
learned during Application Engineering of individual 
systems, i.e., from the analysis of the PFRs from 
testing MRO and ODY, needs to be incorporated into 
the Domain Engineered products.  To this end, we 
looked at all the software PFRs, even for features that 
would not be on GRAIL, since subsequent spacecraft 
in the product line might require those features.  This 
is especially true because, as a Discovery-class 
mission, GRAIL has stricter budgetary limits, such as 
limited redundancy and fault protection, than other 
spacecraft that preceded and will follow it. 

The investigation showed that requirements-
related defects do recur in the product line. For 
example, ODY had problems related to managing the 
mode of operation for the spacecraft’s attitude control 
system and its devices, including reaction wheels. In 
MRO, the problem of managing the mode of 
operation for the spacecraft’s attitude control system 
became more difficult, e.g., due to additional 
redundancy in the power system for the reaction 
wheels. GRAIL will have common features with 
ODY and MRO (including attitude control via 
reaction wheels), but variation in the amount of 
redundancy and in the configuration of devices for 
attitude control. There is thus a need to assure that 
GRAIL will not have a repeat of problems regarding 
the management of mode of operation for the 
spacecraft’s attitude control system.   

The analysis found four types of requirements-
related knowledge in the MRO and ODY software-
related PFRs:  
1. Newly discovered requirements. These defect 

reports describe missing or incomplete 
requirements where the knowledge needed to 
identify the requirement only surfaced during 
testing.  Consistent with our earlier studies on 
some spacecraft not in a product line [16,18], 
these new requirements often involved 

complicated interface issues between software 
variabilities or between hardware and software 
variabilities.  Several of the incomplete 
requirements involved fault protection, which is 
of special concern in high-dependability systems 
such as these.   Many of these newly discovered 
requirements will also be needed in some future 
systems in the product line. 

 
 

 
 
Figure 3 ODC analysis of MRO defect reports 
 

2. Unexpected requirements dependencies. A 
closely related knowledge type was the 
uncovering during testing of unexpected 
dependencies among existing variability 
requirements. These usually involved new 
knowledge about coordination constraints and 
were often revealed as inconsistent states. In 
some cases the unexpected, latent requirements 
dependency involved an incorrect assumption. 
This new or corrected knowledge about 
requirements dependencies will be needed by 
future systems in the product line to avoid 
recurrence.  A potential concern is whether some 
dependencies were resolved by one-time 
workarounds that may not carry over to the next 
product.  
 

3. Tacit requirements rationales.  These 
undocumented rationales, i.e., “justifications of 
decisions” [5], contributed to defect occurrences, 
either because the rationale was not sufficiently 
documented or because it was incorrect. This 
information was not available to the tester 
regarding why a requirement had to be the way it 
was. These rationales often involved the 



hardware or environment. Sometimes the new 
knowledge involved an idiosyncrasy that was 
known but not explicitly documented.  This kind 
of requirements knowledge is especially useful 
to future developers during evolution of the 
product line, as it captures potential, unintended 
impacts of changing requirements.  For example, 
a report this year from a NASA investigation of 
risks associated with the growth in complexity of 
flight software issued sixteen recommendations, 
with the second one entitled "emphasize 
requirements rationale" [6].  

 
4. Misunderstood requirements.  Some defect 

reports were caused by requirements or 
requirements-related information that was in 
some sense documented, but in such a manner 
that it confused the developer or the tester.  
Often this occurred because the documentation 
was partial or ambiguous. Such gaps in 
requirements understanding often surface when 
the software behavior is accurate but surprises 
the testers, leading them to initiate a defect 
report. In previous work we found that in some 
cases where the software behaved correctly but 
unexpectedly, similar, subsequent requirements 
confusion by others (e.g., operators of the 
deployed system) could also occur [18].  It 
seems likely that, in a product line, a similar 
phenomenon will occur.  Requirements-related 
information that confuses developers on one 
product in the product line, if not clarified, can 
confuse developers on subsequent products in 
the product line.  This suggests that in a product 
line, improving the communication of 
requirements knowledge can help preclude the 
recurrence of the same confusion and avoid 
making the same mistake again on later products.     

 
4. Results  

 
The introductory section of the paper described 

two challenges to using the requirements knowledge 
gained from defect analysis of individual product line 
systems to improve the requirements of subsequent 
product-line members: 
• How to capture relevant product-line 

requirements knowledge from the defect reports.   
• How to pro-actively communicate the new 

requirements-related information to developers 
of future product-line members.   

The first challenge has to do with preserving the new 
requirements-related knowledge so that it can be 
reused across the product line as part of the domain-

engineered product-line assets. The second challenge 
has to do with conveying the new requirements 
knowledge to developers of a future project for use in 
its application engineering.  

This section describes how we tried to address the 
two challenges described in the introduction through 
the use of two mechanisms not normally associated 
with requirements management, one formal and one 
informal, to improve communication of these types 
of requirements knowledge to developers of future 
products in the product line. (1) To formally preserve 
new requirements-related knowledge we extend 
feature models with assumption specifications. (2) To 
informally convey the new requirements knowledge 
we use structured anecdotes of paradigmatic defects. 
Together, these two mechanisms appear to help build 
and propagate the four types of requirements 
knowledge exposed by the PFRs for use in future 
products in the product line.  
 
4.1 Extending the feature model to preserve 
new product-line requirements knowledge  
 

Associating new requirements knowledge with the 
features in a product line provides a natural way to 
preserve this information for future product-line 
applications. A feature model describes the common 
and variable requirements of a product line by 
showing the structural relationships (aggregation and 
generalization) and dependencies (e.g., required, 
excluded) among the features [3,11].  To incorporate 
new requirements knowledge, we build on Lago and 
van Vliet’s approach to modeling tacit assumptions in 
an architecture-based product-line feature model 
[13].  

To document an assumption, they first identify the 
features directly influenced by the assumption and 
then define the dependencies between the assumption 
and the feature model.  Their feature model specifies 
which features are potentially impacted by an 
assumption as well as on which assumptions a feature 
depends. Architectural modules and interfaces 
implement each feature.     
 
Example: Extended Feature Model 
The transponder is the spacecraft receiver/transmitter 
used for telecommunications.  During system testing  
on MRO, a false assumption regarding the 
transponder was discovered, resulting in new 
requirements knowledge.     The tacit assumption 
previously had been that the transponder state always 
reflected the state of the carrier, i.e., locked or 
unlocked.  However, it was found in system testing 
that these values could be temporarily out of 



synchronization when the carrier was transitioning 
between lock and unlock.  The consequence was that 
the flight software requirement for fault-protection 
checking of the transponder telemetry had to be 
revised.  New, timing-related software requirements 
knowledge arising from the asynchronous carrier 
lock had to be captured. Moreover, since the 
transponder was a product-line asset, the new 
knowledge needed to be preserved for other product-
line members. Fig. 4 shows a simplified diagram of 
how the corrected assumption is preserved by 
incorporating it into a product-line feature model.  
     

  
 
Figure 4 Feature model extended with assumption 
 
     To date we have avoided scalability concerns by 
only proposing to record those assumptions 
implicated in defect reports in the feature model.  
This decision is consistent with the scope of our 
current effort to use knowledge about defects in past 
systems to improve future systems in the product 
line.  Because defect reports are systematically 
tracked to closure, requiring maintenance of these 
defect-related assumption links in the feature model 
as the product line evolves appears to be practical.  
However, it is an open question and beyond the scope 
of this effort whether it would be feasible, or even 
desirable, to record in a feature model all the many 
assumptions for complex systems such as the 
spacecraft.  By instead focusing on the historically 
troublesome assumptions, the extended feature model 
remains readable and compelling.   
 
4.2 Constructing PLA-DPs to propagate new 
product-line requirements knowledge 
 

To capture tacit requirements knowledge from 
past defect reports for use in future products in the 
product line, we use Product-Line Analysis Defect 
Paradigm (PLA-DPs).  PLA-DPs are stories of 
previous failures or near-misses on previous products 

in the product line.  They are concrete instances of a 
pattern of defects found via the product-line analysis 
of the defect reports. These make the tacit 
requirements knowledge manifest and more actively 
involve the developer in scrutinizing previous 
product-line experience for requirements-related 
information relevant to their particular project.  The 
remembrance of anecdotes helps ensure that lessons 
learned on early instances of the product line do not 
become lessons lost on later instances.  

The PLA-DPs extend Petroski’s design paradigms 
[22] to requirements.  A design paradigm is a case 
study “capable of being presented as a fresh and 
memorable story” that embodies “a general principle 
of design error” that can also arise in new situations. 
It both improves understanding and alerts developers 
to common pitfalls [22]. For example, Petroski 
describes the collapse of the Tacoma Narrrows 
Bridge, subtitling it “a paradigm of the selective use 
of history” and describes the risk of design myopia 
that prolonged success can bring.   

 PLA-DPs thus form a small set of anecdotes that 
represent snapshots of requirements-related defect 
patterns where sharing the knowledge with 
subsequent projects is essential.  The intent is to 
make the information not just available to someone 
looking for it but to actively propagate it to other 
product-line projects’ teams.  The PLA-DP is a good 
fit with product lines because product-line 
requirements have a high degree of commonality.   
(Although PLA-DPs are not restricted to 
requirements-related bugs, we focus here on those.)  

Explicit and sustained attention to past anomalies 
characterizes spacecraft design projects, most 
especially when the spacecraft inherit components 
from each other or form part of a product line.  For 
example, Bayer’s paper [1] has described 14 MRO 
post-launch anomalies in detail, including the story of 
each problem as it unfolded, often from the 
perspective of the operator, together with recovery 
attempts, the causal chain and contributing factors, 
root causes, safety nets used (e.g., that prevented a 
near-miss from being a catastrophe), corrective 
actions, and the lessons learned.  Presentations to 
subsequent projects and to lunchtime seminars help 
propagate the memory of those anomalies.  

One recommendation arising from our study was 
to explicitly include PLA-DP accounts in the domain-
engineered product-line repository.  By associating 
them with the defect reports whose lessons they 
generalize, they can be automatically extracted and 
distributed (i.e., pushed) to each new project.  Since 
the intent is to make the PLA-DPs not only accessible 
but also notorious, each textual account is best 
accompanied by a graphics-rich slide set that visually 



presents the story of the failure or near-miss and the 
insights for future systems in the product line.  
Dudley Herschbach, a Nobel Laureate in chemistry, 
has similarly described the use of compelling stories 
as a way to teach the habit of “actively scrutinizing 
evidence and puzzling out answers” and has urged 
emphasis on the “human adventure of intellectual 
exploration, replete with foibles and failures but 
ultimately achieving wondrous insights”  [9].  The 
PLA-DPs are intended to convey a similar excitement 
and insight. 

 
Example: PLA-DP 
We next give a simplified version of an example 
PLA-DP from MRO experience, followed by an 
explanation of its consequence for subsequent 
spacecraft in the product line.  

During integration testing of MRO, the electrical-
power subsystem reported an unexpected software 
state.  Analysis showed that this was due to a race 
condition that could occur if the reaction-wheel 
subsystem (responsible for aiming the spacecraft) 
was powered off and then back on in within five 
minutes.  In this case an uplinked sequence of pre-
programmed software commands had turned the 
reaction wheels off.  A minute later the high-level 
fault protection software had commanded the 
reaction wheels back on.  This caused the power 
software to be “confused” about what state the 
wheels were in.  The fix entailed a new software 
requirement to disable a schedule-verification 
function whenever the switch was being commanded.  

This anecdote identifies additional requirements-
related information regarding time-related constraints 
on the allowable interactions between the software 
sequence and the fault-protection software in this 
product line. This is important information not only 
for the software developers on this project but also 
for the developers on the other spacecraft in this 
product lines.  This anecdote also provides a rationale 
for why the flight software sometimes disables the 
schedule-verification function. More generally, this 
anecdote alerts the developer to identify which 
commands in this product line can be issued (thus, 
can compete) by different software systems (here, 
fault protection and sequences) to the same hardware 
component.  This is especially important as timing 
defects are probably more expensive to fix than 
function defects, according to a recent study [26].  

 
5. Related Work  
 

The analysis presented here draws together work 
in requirements management of dependencies, 

rationales, and assumptions with work in defect 
analysis, and applies those to product lines. 

Most discussion of knowledge management in 
software development has described architectural 
knowledge [12] rather than requirements knowledge.  
Where requirements have been considered, the 
description is usually of managing the elicitation of 
tacit requirements [8, 27] rather than requirements 
maintenance over the lifetime of a product line.  

Savolainen and Sajaniemi described a structured 
feature model that provided a very detailed 
specification for each feature, including error 
behavior [25].  They described the need to capture 
complex feature interactions and to make feature 
behavior conditional on the presence and absence of 
other features. However, unlike our work, they did 
not consider information from defect reports.   

Dutoit and Paech included the use of rationales in 
use-case and scenario-based modeling [5].  They 
defined rationale to be the justification of system or 
process decisions, including description of options 
Their work surveyed rationale management methods 
and described a process to elicit, document and 
maintain rationale using web-based tool support for a 
two-column table where requirements appear in the 
left column and rationales in the right column. 
However, unlike the work described here, they 
considered a single system rather than a product line 
and provided no discussion of defects.  

As described above, Lago and van Vliet showed 
how assumptions about, e.g., the execution 
environment, can be incorporated into a graphical 
feature model by adding assumption nodes and links 
to the set of features influenced by the assumption 
[13].  They found that they had to add new features to 
the model (i.e., make implicit decisions explicit) in 
order to characterize the assumptions, that 
assumptions could cross-cut features, and that the 
dependencies among features and assumptions could 
be complicated.  They recommended the explicit 
modeling of assumptions for added understanding 
and traceability and to explore the effect of changing 
assumptions.    

Jirapanthong and Zisman advocated using 
traceability relations in product line engineering [10].  
They described the automatic generation of 
traceability relations among feature-based 
documents. However, they did not include defect 
reports among the eight types of documents that they 
considered.  

 Defect analysis during testing has been used to 
evaluate the readiness of software for release and to 
estimate the reliability of the software [2]. Fenton and 
Ohlsson have described the problems in using such 
defect analysis results to measure the quality of 



deployed software [7]. Dalal, Hamada, Matthews, 
and Patton have used ODC to guide pre-release 
process improvement [4]. Ostrand and Weyuker 
compared pre and post-release faults in an 
investigation of module fault density and fault 
proneness components [21].   

While many authors have described the use of 
defect mining to improve the quality of a single 
project or of the development process, there has been 
little work that uses defect analysis results to improve 
or manage the requirements knowledge needed for a 
product line. One exception is Maalej and Happel’s 
suggestion of the value of providing a hierarchical 
schema for classifying errors in order to enable 
finding similar situations for which experience 
already exists [19]. Mohagheghi, Conradi, Killi and 
Schwarz studied reused components and found that 
they had lower defect density than non-reused ones 
but more defects with highest severity [20].  At the 
architectural level, Trew used root-cause analysis of 
900 problem reports to identify and package rules to 
reduce integration errors in a product line [28]. 

Defect analysis has shown that misunderstanding 
of requirements and their underlying rationales 
frequently cause defects. Lauesen and Vinter, for 
example, looked at 200 of the 800 defect reports 
available a few months after a product’s release. 
They found that about half of the defect reports 
involved requirements defects, with missing 
requirements being the most frequent cause [14].  
Similarly, in an early study of testing defects in the 
spacecraft domain, we found that the most common 
causes of critical software defects were 
misunderstanding the software’s interfaces with the 
system and discrepancies (e.g., omissions or 
inaccuracies) between documented requirements and 
actual requirements [16]. Van Lamsweerde and 
Letier’s classification of common information-related 
obstacles to achieving requirements goals (e.g., 
Information unavailable, Information not in time, and 
Wrong belief) [29] were used in [18] to describe 
requirements defects.  

 
6. Conclusion 

 
As resources allow, we plan to expand our use of 

defect analysis to study the PFRs on other spacecraft 
in the flight software product line.  This may involve 
PFRs from additional past spacecraft in the product 
line, such as Mars Odyssey or Phoenix, as well as of 
implications for additional future spacecraft, such as 
Juno (launching to Jupiter in 2010) in the product 
line. More generally, we plan to continue to 
investigate how requirements knowledge gathered 

from defect reports from previous product-line 
members can be preserved and conveyed most 
effectively to help reduce the risk of similar 
anomalies for future product-line members.  

 
Acknowledgments. The authors thank Michel 
Ingham and Steve Larson, JPL, for useful feedback 
on preliminary work and Michael Stevens, Lockheed 
Martin, for additional explanations.  

The research described in this paper was carried out 
at the Jet Propulsion Laboratory, California Institute 
of Technology and funded by NASA’s OSMA 
Software Assurance Research Program.  

References  
 
[1] T.J. Bayer, “Mars Reconnaissance Orbiter In-Flight 
Anomalies and Lessons Learned:  An Update”, IEEE 
Aerospace Conference, 2009.  
 
[2] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. 
Halliday, D. S. Moebus, B. K. Ray, and M.-Y. Wong, 
“Orthogonal Defect Classification—A Concept for In-
Process Measurements, IEEE Trans on SW Eng, Nov. 
1992, pp. 943-956. 
 
[3] H. Cho, K. Lee, and K. C. Kang, “Feature Relation and 
Dependency Management:  An Aspect-Oriented 
Approach”, SPLC 2008, pp. 3-11. 
 
[4] S. Dalal, M. Hamada, P. Matthews, and G. Patton, 
“Using Defect Patterns to Uncover Opportunities for 
Improvement,” Proc. Int’l Conf Applications of Software 
Measurement, 1999.  
 
[5] A. Dutoit and B. Paech, “Rationale Management in 
Software Engineering”, in Handbook of Software 
Engineering and Knowledge Engineering, Chang, S.K. 
(Ed.), World Scientific Publishing. 2000, pp. 787-816. 
 
[6] D. Dvorak, ed., NASA Study on Flight Software 
Complexity,http://oceexternal.nasa.gov/OCE_LIB/pdf/1021
608main_FSWC_Final_Report.pdf, 2009.  
 
[7] N. E. Fenton and N. Ohlsson, “Quantitative Analysis of 
Faults and Failures in a Complex Software System,” IEEE 
Trans on Software Eng, vol. 26, no. 8, Aug, 200, pp. 797- 
814. 
 
[8] P. Grunbacher and R. O. Briggs, “Surfacing Tacit 
Knowledge in Requirements Negotiation:  Experiences 
using EasyWinWin”, Proc. 34th HICSS, 2001.  
 
[9] D. Herschbach, “The Impossible Takes a Little 
Longer”, in Science Literacy for the 21st Century, 
Stephanie P. Marshall, Judith A. Scheppler, & Michael J. 
Palmisano, Eds., Prometheus, 2003.  
 



[10] W. Jirapanthong and A. Zisman, “Supporting Product 
Line Development through Traceabilility, APSEC’05.  
 
[11] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented 
Product Line Engineering”, IEEE Software, vol. 9, issue 4, 
July, 2002, pp. 58-65.  
[12] P. Kruchten, P. Lago and H. van Vliet, “Building Up 
and Reasoning about Architectural Knowledge”, QoSA 
2006, LNCS 4214, pp. 43-58.  
 
[13] P. Lago and H. van Vliet, “Explicit Assumptions 
Enrich Architectural Models”, ICSE’05, pp. 206-214. 
 
[14] S. Lauesen and O. Vinter, “Preventing Requirements 
Defects: An Experiment in Process Improvement,” 
Requirements Engineering Journal, 2001, pp. 37-50. 
 
[15] M. Leszak, D.E. Perry and D. Stoll, “Classification 
and Evaluation of Defects in a Project Retrospective,” The 
Journal of Systems and Software, vol. 61, issue 3, 1 April, 
2002, pp. 173-187. 
 
[16] R. Lutz, “Analyzing Software Requirements Errors in 
Safety-Critical, Embedded Systems,” Proc IEEE Intl Symp 
Req Eng, IEEE CS Press, 1993, pp. 126-133. 
 
[17] R. Lutz, “Enabling Verifiable Conformance for 
Product Lines”, SPLC 2008, pp. 35-44. 
 
[18] R. Lutz, I. C. Mikulski, “Requirements Discovery 
during the Testing of Safety-Critical Software”, ICSE 2003, 
pp. 578-585. 
 
[19] W. Maalej and H.-J. Happel, “A Lightweight 
Approach for Knowledge Sharing in Distributed Software 
Teams”, Proc. 7th Conf on Practical Aspects of Knowledge 
Management, LNCS 5345, pp. 14–25, 2008. 
 
[20] P. Mohagheghi, R. Conradi, O.M. Killi, H. Schwarz, 
“An Empirical Study of Software Reuse vs. Defect-Density 
and Stability”, ICSE 2004, 282-292. 
 
[21] T. J. Ostrand and E. J. Weyuker, “The Distribution of 
Faults in a Large Industrial Software System,” Proc Int’l 
Symp on Software Testing and Analysis, in Software 
Engineering Notes, July, 2002, pp. 55-64  
 
[22] H. Petroski, Design Paradigms: Case Histories of 
Error and Judgment in Engineering, Cambridge University 
Press, 1994.  
 
[23] K., Pohl, G. Bockle and F. van der Linden, Software 
product line engineering: foundations, principles and 
techiques. 2005, Springer, DE. 
 
[24] R. Rasmussen, “Thinking Outside the Box to Reduce 
Complexity in NASA Flight Software”, App. H in D. 
Dvorak, ed., NASA Study on Flight Software Complexity,  
http://oceexternal.nasa.gov/OCE_LIB/pdf/1021608main_F
SWC_Final_Report.pdf, 2009.  
 

[25] P. Savolainen and J. Sajaniemi, “Improving 
Knowledge Sharing in Embedded Software Production 
Line”, 1st Intl Workshop on Managing Requirements 
Knowledge (MARK'08), 2008. 
 
[26] F. Shull, V. Basili, B. Boehm, A. Winsor Brown, P. 
Costa, M. Lindvall, D. Port, I. Rus, R. Tesoriero, and M. 
Zelkowitz, “What We Have Learned About Fighting 
Defects”, Proc. 8th IEEE Symp on Software Metrics, 2002.  
 
[27] A. Stone and P. Sawyer, “Identifying tacit knowledge-
based requirements”, IEE Proc.-Softw., vol. 153 (6), Dec., 
2006. 
 
[28] T. Trew, “Enabling the Smooth Integration of Core 
Assets: Defining and Packaging Architectural Rules for a 
Family of Embedded Products”, SPLC 2005, pp. 137-149. 
 
[29] A. van Lamsweerde and E. Letier, “Handling 
Obstacles in Goal-Oriented Requirements Engineering,” 
IEEE Trans on Software Eng, vol. 26, no. 10, Oct. 2000, 
pp. 978-1005. 
 
[30] Software Engineering Institute, “Product Line Hall of 
Fame,” http://www.sei.cmu.edu/productlines/plp_hof.html 
 
[31] Weiss, D.M. and Lai, C. T. R., Software Product Line 
Engineering: A Family-Based Software Development 
Process. Boston: Addison-Wesley, 1999. 
 
 


