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ABSTRACT

Background: Previous research on three years of early data
for an Eclipse product identified some predictors of failure-
prone files that work well for that data set. Additionally,
Eclipse has been used to explore characteristics of product
line software in previous research.
Aims: To assess whether change metrics are good predictors
of failure-prone files over time for the family of products in
the evolving Eclipse product line.
Method: We repeat, to the extent possible, the decision
tree portion of the prior study to assess our ability to repli-
cate the method, and then extend it by including four more
recent years of data. We compare the most prominent pre-
dictors with the previous study’s results. We then look
at the data for three additional Eclipse products as they
evolved over time. We explore whether the set of good pre-
dictors change over time for one product and whether the
set differs among products.
Results: We find that change metrics are consistently good
and incrementally better predictors across the evolving prod-
ucts in Eclipse. There is also some consistency regarding
which change metrics are the best predictors.
Conclusion: Change metrics are good predictors for failure-
prone files for the Eclipse product line. A small subset of
these change metrics is fairly stable and consistent across
products and releases.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Product metrics,
Process metrics
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Figure 1: Data set summary

1. INTRODUCTION
What is unique about software product lines as distinct

from other systems is that there is a high degree of com-
monality among all the systems in the product line but they
may differ one from another via a set of allowed variations.
Commonalities are implemented in files that are reused in
every product. Variations are implemented in files that are
available for reuse in a subset of products requiring the same
options or alternatives.

Ongoing change is typical in product lines and proceeds
along two main dimensions. The first dimension is evolution
of the product line in which, as the product line matures,
more products are built. Some of these additional products
may include new features (i.e., units of functionality [3]).
The changes also may propagate to other, previously built
products [35]. If the changes are incorporated into the prod-
uct line, the product line asset repository is updated so that
future products can reuse them.

The second dimension of product line evolution is changes
in an individual product from one of its releases to another.
This is similar to the evolution and maintenance of a single
system, except that it may happen to each system in the
product line. In previous work we have shown that even
files implementing commonalities experience change on an
on-going basis [16].
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This high degree of commonality and low degree of vari-
ations mean that we may well be able to learn something
about predicting failure-prone files in the product line from
information about changes, bug fixes, and failures experi-
enced by previous systems in the product line. A failure-
prone file is a file with one or more non-trivial post-release
bugs recorded in the Eclipse Bugzilla database.
The work presented in this paper is motivated by the fol-

lowing research questions. Are there any change metrics that
serve as good predictors for which files are failure prone as
a product matures over releases? Do any of these change
metrics also serve as good predictors across all the products
in a product line over time? Does our ability to predict the
failure-prone files improve over time across products as the
product line matures?
To investigate these questions, we explore here whether

accurate and meaningful predictions of failure-prone files can
be made, both across the sequential releases of a single prod-
uct and across the various products in a product line. We
study whether there are good predictors of failure-prone files
for individual products in the product line, whether there
are good predictors across the product line, and what the
relationship is between them.
Our data-driven investigation is based on using the large

open-source project Eclipse which, following Chastek, Mc-
Gregor and Northrop [6], we consider as a product line. We
build on previous work by Zimmermann, Premraj and Zeller
[39] and by Moser, Pedrycz and Succi [25]. The authors in
[39], a 2007 PROMISE paper, studied defects from the bug
database of three early releases of an Eclipse product at
both the file and package level. They annotated the data
with code metrics, made it available, and built logistic re-
gression models to predict post-release defects. At the file
level, the models had mixed results, with low recall values
less than 0.400 and precision values mostly above 0.600. The
authors in [25], a 2008 paper, found that change metrics per-
formed better than code metrics on a selected subset of the
same Eclipse data set, and that the performance of the J48
decision tree learner surpassed the performance of logistic
regression and Näıve Bayes learners.
We are most interested in observing the performance of

the J48 machine learner on Eclipse and determining whether
the set of prominent predictors changes both between prod-
ucts and as the product line evolves over time. Thus, in the
work described in this paper, we first repeat the decision
tree portion of the study presented in [25] to assess our abil-
ity to replicate the method, and then extend it by including
four more recent years of data. For this work we use the
J48 tree-based learning algorithm as implemented in Weka
[12], as we are interested in both the prediction results and
the tree structure [32]. We look at the evolution of one par-
ticular product, Eclipse Classic, over a period of 9 years.
We observe the classification results during its early evolu-
tion (versions 2.0, 2.1, and 3.0), as in [25], but also look at
its more recent evolution (the versions for years 2007, 2008,
2009, and 2010). We find some overlaps and some differences
between the most prominent predictors over the shorter and
longer time periods for these components. Performance of
the J48 learner on our larger data set is similar or better
than for the smaller data set in [25].
We then repeat the effort for three additional products in

the Eclipse product line, Eclipse Java, Eclipse JavaEE and
Eclipse C/C++, across the last four years of their evolution.

Results show that a small set of change metrics are consis-
tently good predictors and that prediction results of post-
release failure-prone files improve over time in the Eclipse
product line.

Several interesting findings resulting from the investiga-
tion are described in the rest of the paper. The main con-
tributions of the work are:

• Change metrics. The change metrics provide good
classification of the failure-prone files in the Eclipse
product line.

• Product evolution. As each product evolves, there is
a stable set of change metrics that are prominent pre-
dictors of failure-prone files across its releases.

• Product line evolution. There is some consistency among
the prominent predictors for early vs. late releases for
all the considered products in the product line. There
is a subset of change metrics (number of revisions,
maximum changeset and number of authors) that is
among the prominent predictors of all the products
across most of the releases.

• Prediction trends. As the product line matures, the
learner performance improves (i.e., higher percentage
of correctly classified files, higher true positive rate,
and lower false positive rate) for each of the four Eclipse
products.

The rest of the paper is organized as follows. Section 2
describes Eclipse and gives the reasons for considering it as
a software product line. Section 3 presents the approach to
data collection and analysis. Section 4 describes the obser-
vations and findings for evolution of single products. Section
5 describes the observations and findings for evolution of the
product line. Section 6 summarizes and discusses the results
in the context of software product lines. Section 7 considers
threats to validity. Section 8 describes additional related
work. Section 9 provides concluding remarks.

2. ECLIPSE PRODUCT LINE
A product line is “a family of products designed to take

advantage of their common aspects and predicted variabil-
ities” [36]. The systematic reuse and maintenance of code
and other artifacts in the product line repository has been
shown to support faster development of new products and
lower-cost maintenance of existing products in many indus-
tries [2], [10], [30], [36]. As the common and variation code
files are reused across products, they go through iterative
cycles of testing, operation and maintenance that over time
identify and remove many of the bugs that can lead to fail-
ures. There is thus some reason to anticipate that the qual-
ity and reliability of both the existing products and the new
products may improve over time.

The lack of available product line data, however, makes it
hard to investigate such and similar claims. The availabil-
ity of Eclipse data is a noteworthy exception. The Eclipse
project, described on its website as an ecosystem, documents
and makes available bug reports, change reports, and source
code that span the evolution of the Eclipse products.

Chastek, McGregor and Northrop [6] were the first that
we know of to consider Eclipse from a product line perspec-
tive. Eclipse provides a set of different products tailored to
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the needs of different user communities. Each product has a
set of common features, yet each product differs from other
products based on some variation features. The features
are developed in a systematic manner with planned reuse
for the future. The features are implemented in Eclipse as
plug-ins and integrated to form products. The products in
the Eclipse product line are thus the multiple package distri-
butions provided by Eclipse for different user communities.
In previous work [16], we studied the failure and change

trends at the component level for the commonalities and
variations in the Eclipse product line. We found that as
the product line evolves, fewer serious failures occur in com-
ponents implementing commonalities than in components
implementing variations, and that the common components
also exhibit less change than the variable components over
time. This motivated our current effort to understand
whether the stabilizing behavior of the commonalities as the
product line evolves supports prediction of failure-prone files
over the product line.

3. APPROACH

3.1 Data Collection and Integration
In order to both replicate and extend the work conducted

by Moser et al. [25], we collected Eclipse CVS log data and
bug tracking database entries from May 2001 to the present.
This data was partitioned into time periods corresponding
with 6 months before and after the release of Eclipse 2.0,
Eclipse 2.1, Eclipse 3.0, Europa, Galileo, Ganymede, and
Helios. Figure 2 shows the time periods for the data col-
lected for each release.
We extracted the same set of change metrics, including

identifying bug-fixes, refactorings, and changeset size. Ta-
ble 1 lists the metrics we used in our study. A detailed
description of these metrics is given in [25]. For pre-Europa
releases, i.e. releases 2.0, 2.1, and 3.0, as in [39], we mined
the CVS log data by looking for four and five digit strings
matching the bug IDs. For Europa and later, we matched
six-digit strings to bug IDs. A manual review of data in-
stances showed that no entries containing the word “bug”
existed which were not caught by this pattern match. Ex-
tracting the metric Refactorings followed Moser’s approach,
namely tagging all log entries with the word “refactor” in
them. The Age metric was calculated by reviewing all CVS
log data from 2001 onward and noting the timestamp of the
first occurence of each file name.
To determine changeset size, we used the CVSPS tool [18].

This tool identifies files which were committed together and
presents them as a changeset. Slight modifications to the
tool were required to ensure that the file names produced in
the changesets included the path information to match the
file names produced by our rlog processing script.
We wrote custom scripts to parse the CVS logs, converting

the log entries into an SQL database. This data, along with
changesets, bugs, and refactorings, were used to compute
the metric values for each file. Finally, Weka-formatted files
(ARFF) were produced. Figure 3 provides an overview of
this process.
To ensure that the data resulting from the various input

sources all contained matching filenames (the key by which
the data were combined), and covered the same time peri-
ods, a few on-the-fly modifications were necessary. In cases
where a file has been marked“dead”, it is often moved to the

Table 1: List of Change Metrics [25]
Metric name Description
REVISIONS Number of revisions made to a

file
REFACTORINGS Number of times a file has been

refactored
BUGFIXES Number of times a file was in-

volved in bug-fixing (pre-release
bugs)

AUTHORS Number of distinct authors that
made revisions to the file

LOC ADDED Sum over all revisions of the
number of lines of code added
to the file

MAX LOC ADDED Maximum number of lines of
code added for all revisions

AVE LOC ADDED Average lines of code added per
revision

LOC DELETED Sum over all revisions of the
number of lines of code deleted
from the file

MAX LOC DELETED Maximum number of lines of
code deleted for all revisions

AVE LOC DELETED Average lines of code deleted
per revision

CODECHURN Sum of (added lines of code -
deleted lines of code) over all re-
visions

MAX CODECHURN Maximum CODECHURN for
all revisions

AVE CODECHURN Average CODECHURN per re-
vision

MAX CHANGESET Maximum number of files com-
mitted together to the reposi-
tory

AVE CHANGESET Average number of files commit-
ted together to the repository

AGE Age of a file in weeks (count-
ing backwards from a specific re-
lease to its first appearance in
the code repository)

WEIGHTED AGE

N∑

i=1

Age(i)×LOC ADDED(i)

N∑

i=1

LOC ADDED(i)

where

Age(i) is the number of
weeks starting from the re-
lease date for revision i and
LOC ADDED(i) is the num-
ber of lines of code added at
revision i

Attic in CVS. This results in an alteration of the file path,
which we adjusted by removing all instances of the pattern
“/Attic/” from all file paths.

An artifact of using the CVS rlog tool with date filtering
is that files which contain no changes during the filter period
will be listed as having zero revisions, with no date, author,
or other revision-specific information. This is true even if
the file was previously marked “dead” on a branch. Thus,
rather than examining only the date range required for each
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specific release, we obtained the rlog for the entire file history
and determined the files which were alive and the revisions
which applied to each release.
To validate our approach, we compared our resulting file

set for the pre-Europa releases with the file sets available
from Zimmermann’s work [39]. We found that there were
a few differences in the two data sets due to the indepen-
dent data collection processes. While most of the files were
common to both data sets, there was a small subset of files
which were unique to each of them. For the three com-
ponents, Platform, JDT and PDE, in the 2.0 release, we
included 6893 files as compared to their 6730 files. In the
2.1 release, we had 7942 files while they had 7888, and in
the 3.0 release, we had 10822 files as compared to 10593 in
theirs. Further inspection showed that there were some dif-
ferences in the list of plugins included in both studies. We
also observed that some files which were not present in the
earlier data set did have revisions during the development
and production lifetime of the respective releases, and hence
should have been included in the analysis. We thus included
those in our data set.

3.2 Data Analysis
Using the features given in Table 1, we use the J48 decision

tree learner to predict the files which are failure-prone. In
this paper the prediction is done at release level, for each
product in the product line, that is, both the training and
testing data belong to the same release of the same product.
Based on the confusion matrix shown below in Table 2, we
define our performance measures along the lines of [25] and
[39].

Table 2: Confusion matrix
Predicted Class

Not
Failure-
prone

Failure-
prone

True Class
Not
Failure-
prone

n11(TN) n12(FP )

Failure-
prone

n21(FN) n22(TP )

In the rest of this paper, we use the following measures of
learner’s performance.

• PC (percentage of correctly classified instances, also
known as accuracy) = (n11 + n22)/(n11 + n12 + n21 +
n22) ∗ 100%

• TPR (true positive rate, also known as recall) = n22/(n21+
n22) ∗ 100%

• FPR (false positive rate) = n12/(n11 + n12) ∗ 100%

The measure PC, Accuracy, relates the number of cor-
rect classifications to the total number of files. The measure
TPR, Recall, relates the number of files predicted and ob-
served to be failure prone to the number of failure-prone
files. It is also known as probability of detection. The mea-
sure FPR relates the files the learner incorrectly classified as
failure-prone to the total number of non-failure-prone files.
These measures are used by Moser, et al. [25].
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The results were obtained using 10-fold cross validation.
Apart from the prediction results obtained from the strat-
ified cross-validation confusion matrix, we extract the tree
produced by the J48 algorithm. The trees produced by the
J48 algorithm were large in size with many leaves. For the
Eclipse Classic product, the trees contained approximately
600 nodes and 300 leaves. It is manually difficult to parse
the trees and determine the prominent predictors. For this
purpose we modified the J48 code in Weka to output the
gain ratio weights assigned to the nodes of the tree based on
the number of correctly classified files from the total number
of files. We then sorted the nodes in the descending order of
weights and chose the nodes with the highest weight to be
prominent predictors. All our data and results are available
at [1].

4. OBSERVATIONS AS A SINGLE PROD-
UCT EVOLVES

In this section we discuss the performance of the machine
learner and the sets of prominent predictors for single prod-
ucts in the product line.

4.1 How does our learner performance com-
pare with previous results?

We performed classification of post-release failure-prone
files for three older releases of Eclipse, namely 2.0, 2.1 and
3.0, similar to that performed by [25]. These older releases of
Eclipse did not have many components. Platform, JDT and
PDE were the important components, and the combination
of these three components was distributed as Eclipse SDK.
This combination of components is now one product called
Eclipse Classic in the Eclipse product line. Moser, Pedrycz
and Succi in [25] looked at three releases, 2.0, 2.1 and 3.0
of this single product. We performed classification on the
same three releases for this product using the J48 learner.
Table 3 compares our results with theirs. We see that our

results are slightly better than previous results across all
three releases in terms of both correctly classified instances
(PC) and false positive rates (FPR). Except for TPR val-
ues in two releases, 2.0 and 3.0, our results are similar to
or slightly better than the previous results. On comparing
the results for releases 2.0 and 2.1 with release 3.0, we see
that both in [25] and in our study, 2.0 and 2.1 show better
prediction results than 3.0, in terms of PC and FPR. This
may be due to the fact that there was a restructuring of
Eclipse’s architecture in 3.0 which introduced more files and
more changes.

Table 3: Comparison of classification performance
for 2.0, 2.1, and 3.0 releases of Eclipse Classic

Release
Moser et al. [25] This study
PC TPR FPR PC TPR FPR

2.0 82 69 11 88 55 5
2.1 83 60 10 85 63 9
3.0 80 65 13 84 62 9

A reason for the difference in results may be the different
number of files used, as described in Section 3.1. The data
sets used in [25] consisted of significantly smaller subsets of
the files in [39] (57% of the 2.0 files, 68% of the 2.1 files,
and 81% of the 3.0 files), which was mentioned as due to

incomplete history. Our data sets are larger, comparable in
size to the data sets in [39], with a few differences between
them.

4.2 Does learner performance improve as a sin-
gle product evolves?

We next explore the performance for later releases of the
same product, Eclipse Classic. The results for the years
2007, 2008, 2009 and 2010 in Table 4 show significant im-
provement in PC, TPR and FPR over the earlier years. One
possible reason for the improved performance of the learner
during the later releases could be the reuse of files imple-
menting commonalities. For example, the 2009 Galileo re-
lease shows a true positive rate of almost 86% and a very
low false positive rate of approximately 2%. This is impor-
tant since a high true positive rate indicates that the files
that have been predicted as failure-prone are indeed having
failures. A high TPR can encourage projects to allocate re-
sources before release or as early as possible after release in
order to minimize failures. The very low false positive val-
ues indicate that there are few files predicted as failure-prone
when they actually are not, which leads to saving resources
that otherwise might be allocated unnecessarily to find de-
fects which may not be present.

Table 4: Results for 2007-2010 releases of Eclipse
Classic

Release PC TPR FPR
3.3 (Europa) 93 79 4

3.4 (Ganymede) 94 81 3
3.5 (Galileo) 97 86 2
3.6 (Helios) 97 85 2

4.3 Is the set of predictors stable across re-
leases of a single product?

We next explore whether the set of prominent predictors
identified by the J48 algorithm remains stable across releases
for a single product in the product line, namely Eclipse Clas-
sic. We refer to the top five predictors in the decision tree as
the set of prominent predictors. Results reported by Zim-
mermann, Premraj and Zeller [39] for the three earlier re-
leases showed that a model learned from one release could
be applied to a later release without losing too much pre-
dictive power. However, their models had low TPR (i.e.,
recall), which made this potential reuse suggestive but not
yet useful. Moser et al. [24] identified three change metrics
that were among the top five defect predictors for releases
2.0, 2.1, and 3.0. These are Max Changeset, Bugfixes, and
Revisions.

For Eclipse Classic, Table 5 shows the prominent predic-
tors from [25] and from our study. The predictors in bold are
the ones that occur in all three of the early releases. Only
Revisions is common to all three releases in both studies.
In our study, Weighted Age is common to all three releases,
and Age and CodeChurn appear in two out of three releases.
One interesting observation is that Max Changeset which is
one of the top three predictors in [25] does not appear even
once as a prominent predictor in our study. This could be
because of the difference in the two data sets.

The next step is to see if the same set of predictors appear
for the later releases of the same product. It is not unusual in
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Table 5: Comparison of Prominent Predictors
Release Top five predic-

tors from [25]
Top five predic-
tors from this
study

2.0 Max Changeset,
Revisions, Age,
Bugfixes, Refactor-
ings

Revisions,
Weighted Age,
Ave Changeset,
Bugfixes,
Max LOC Added

2.1 Bugfixes,
Max Changeset,
Revisions,
Max LOC Added,
Max LOC Deleted

Revisions,
CodeChurn, Age,
Weighted Age,
LOC Deleted

3.0 Revisions,
Max Changeset,
Bugfixes, Age,
Ave LOC Added

Revisions, Authors,
Weighted Age,
CodeChurn, Age

machine learning for the best predictors to differ across data
sets. Table 6 shows the five prominent predictors for the
four later releases of the Eclipse Classic product. Notably,
Revisions remains a common predictor in all four releases.
Interestingly, Max Changeset, which was not a prominent
predictor in the early releases, appears as a common predic-
tor in all four later releases. Also, Weighted Age, which was
a prominent predictor in the earlier three releases, appears
in only two of the four later releases. Other predictors such
as Authors appear in three releases. As the Eclipse Classic
product evolves over time, Revisions and Max Changeset
continue to be the most prominent and stable predictors.

5. OBSERVATIONS AS THE PRODUCT LINE
EVOLVES

In this section we discuss how the performance of the ma-
chine learner and the sets of prominent predictors change as
the product line evolves.

5.1 Does learner performance improve as the
product line evolves?

In addition to the Eclipse Classic product studied in sec-
tion 4, we applied the learning algorithm to three other
products in the Eclipse product line, Eclipse Java, Eclipse
JavaEE, and Eclipse C/C++. Figures 4, 5 and 6 show the
results for the PC, TPR and FPR across four years for the
four products in Eclipse’s product line. The X-axis shows
the four products and the Y-axis shows the PC, TPR and
FPR, respectively.
We observe that across the product line, results show an

improving trend for all products. In terms of correctly clas-
sified instances, all products have PC rates above 90%, with
the 2010 release of JavaEE having 98% correctly classified
instances. The true positive rates lie in the range of 78% to
91%, with the 2009 Galileo release of the C/C++ product
having the highest true positive rate of 91%. False positives
show very low values, ranging from 4% to as low as 1%,
with the 2010 Helios release of JavaEE product having the
lowest FPR. It follows that every product shows improved
prediction performance as the product line evolves.

Figure 4: PC trends across products and releases

Figure 5: TPR trend across products and releases

Figure 6: FPR trend across products and releases

5.2 Is the set of best predictors stable across
products, as the product line evolves?

Earlier we saw that for Eclipse Classic, Revisions and
Max Changeset were stable, prominent predictors. Here we
investigate if this set remains the same when we consider
multiple products in the Eclipse product line or whether the
set differs for different products in the product line.

Table 7 compares multiple products across the 2007-2010
releases. The last row of each column gives a summary of
the prominent predictors for that particular product and
in how many releases it appeared. We find that there is
no common predictor across each product and each release.
Max Changeset appears as the most common predictor. Re-
visions and Authors are the other prominent predictors for
the product line. Other predictors such as CodeChurn, Bug-
fixes and Age are prominent predictors for only one product.

The observations suggest that while there are some pre-
dictors which emerge as prominent ones across all releases
of all products, others are prominent only for a single prod-
uct or a few products. Hence we cannot conclude that there
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Table 6: 2007-2010 Prominent Predictors for Eclipse Classic
Release Top five predictors

3.3 (Europa) Ave Loc Added, Revisions, Authors, Max Changeset, Weighted Age
3.4 (Ganymede) Revisions, Age, Ave Changeset, Max Loc Added, Max Changeset
3.5 (Galileo) Loc Added, Authors, Max Changeset, Revisions, Weighted Age
3.6 (Helios) Authors, Revisions, Max Changeset, Bugfixes, CodeChurn

is a single set of predictors which is most prominent for all
products.

6. DISCUSSION OF THE RESULTS
The highlights of the observations about prediction of

post-release failure-prone files using change metrics in the
Eclipse product line are summarized as follows:

1. Previous work [25] showed change metrics to be good
predictors for predicting non-trivial post-release de-
fects for older releases of Eclipse. We observe that
change metrics continue to be good predictors for later
releases of the same product. In fact, the results im-
prove significantly as the product evolves with time.
Predictions show high true positive and very low false
positive values, better than previous studies.

2. All products show improvement in prediction of failure-
prone files (i.e., files with bugs detected post-release)
across releases.

3. The change metrics Max Changeset, Revisions, and
Authors, appear as prominent predictors across all four
products in the product line.

4. There is a small set of change metrics that are promi-
nent predictors for specific products in the product
line. For example, CodeChurn, Bugfixes and Age ap-
pear to be prominent predictors of failure-proneness
for Eclipse Java, Eclipse JavaEE and Eclipse C/C++
respectively.

Briefly, the results show significant improvement in the
true positive and false positive rates across four products in
the Eclipse product line over a period of seven years. During
later stages of evolution, the capability to predict non-trivial
post-release bugs shows improvement. As compared to the
older releases (2.0, 2.1 and 3.0) the more recent releases show
less activity in terms of number of Revisions. That is, a large
portion of the total files in each product remain unchanged.
This may allow the prediction algorithm to predict defects
more accurately.

7. THREATS TO VALIDITY
This section discusses the internal and external validity of

the study.
One threat to the internal validity of this study is that we

performed analysis using only one machine learning algo-
rithm, namely J48. Moser et al. [25] also used Näıve Bayes
and logistic regression learners but found J48 to give the
best results.
Another threat to the internal validity is the limited num-

ber of releases in the study. While analyzing more releases
might give additional insight into the trends, the 2007-2010

releases provide a representative picture of the current prod-
uct line situation. We did not include the minor quarterly re-
leases into our analysis because there were fewer users down-
loading them and because the entries in the bug database
for these minor releases were missing data for several com-
ponents. Some of the minor releases reported higher num-
bers of failures while others did not report any. We plan to
observe future releases as they become available and incor-
porate the new data for analysis.

As mentioned by [25], a possible threat to the internal
validity could be the choice of metrics used in this study.
We followed [25] in using a particular set of change metrics.
In general, there could be other change metrics which may
lead to different results. There may also be other yet un-
discovered code metrics which may give better results.

There may also be inaccuracies in our data collection pro-
cess at one or more steps. We performed manual and auto-
mated inspections on our data set to verify and validate its
accuracy. We have made our data set public so that other
researchers can validate the results of this study.

An external validity threat to this study is the extent to
which these observations can be generalized to other prod-
uct lines. Eclipse is a large product line with many devel-
opers in an open-source, geographically distributed effort.
This means that the development of Eclipse product line is
probably more varied in terms of the people involved and
the development techniques used than in commercial prod-
uct lines. Chastek, McGregor and Northrop consider the
open-source development to be largely beneficial in terms of
quality [6]. We hope to study other open-source software
product lines and currently are studying a commercial soft-
ware product line to learn more about reuse, change and
reliability in product lines.

8. RELATED WORK
There have been few studies that consider defects in soft-

ware product lines or mine their failure databases. As noted
earlier, the lack of available datasets for product lines has se-
riously hampered investigation of the relationships between
evolution and product quality, including the ability to pre-
dict failure-proneness. Of course, this is true not only for
product lines. For example, Catal and Diri recently reported
that only 31% of the 74 papers they reviewed used public
datasets, making it difficult to reproduce or extend results
[5].

With regard to product lines, Mohagheghi and Conradi
[22], [23], compared the fault density and stability (change)
of the reused and non-reused components in a system de-
veloped using a product family approach. They found that
reused components have lower fault density and less modi-
fied code as compared to non-reused components.

Studies reported in [39], [26], [27], [38], [11] have used bug
reports and bug repositories such as Bugzilla for predict-
ing defects and failures. Jiang, Menzies, Cukic and others
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Table 7: 2007-2010 Prominent Predictors for multiple products
Release Java JavaEE C/C++ Classic
2007 Revisions, CodeChurn,

Ave Changeset,
Weighted Age,
Max Changeset

Authors,
Max CodeChurn,
Max Changeset,
LOC Added,
Ave Changeset

Authors, Revisions,
Max Changeset, Age,
Max CodeChurn

Ave LOC Added, Re-
visions, Authors,
Max Changeset,
Weighted Age

2008 CodeChurn, Age,
Ave LOC Added, Au-
thors, Max Changeset

Authors, Revisions,
Max Changeset,
Weighted Age, Bugfixes

CodeChurn, Authors, Re-
visions, Ave LOC Added,
Age

Revisions, Age,
Ave Changeset,
Max LOC Added,
Max Changeset

2009 Authors, Revisions,
Max Changeset, Age,
LOC Deleted

Authors, Revisions,
Max Changeset, Bugfixes,
Ave Changeset

Authors, Revisions,
Max Changeset, Age,
Ave Changeset

LOC Added, Authors,
Max Changeset, Revi-
sions, Weighted Age

2010 Authors, Revisions, Bug-
fixes, Max Changeset,
CodeChurn

Max CodeChurn, Au-
thors, Max Changeset,
Revisions, Bugfixes

Ave CodeChurn,
max LOC Added, Re-
visions, Ave Changeset,
Max Changeset

Authors, Revisions,
Max Changeset, Bugfixes,
CodeChurn

Max Changeset:4 Re-
visions:3 Authors:3
CodeChurn:3

Authors:4
Max Changeset:4
Revisions:3 Bugfixes:3

Revisions:4 Authors:3
Max Changeset:3
Age:3

Revisions:4
Max Changeset:4
Authors:3

[14], [19] have used machine learning algorithms successfully
to perform defect prediction. Ostrand, Weyuker and Bell
were able with high accuracy to predict the number of faults
in files in two large industrial systems [28]. Menzies et al.
found that a lower number of training instances provided as
much information as a higher number for predicting faulty
code modules [20]. Zhang predicted the number of future
component-level defects reasonably well using a polynomial
regression-based model built from historical defect data [37].
Besides the work of [39] and [25] described previously,

several different approaches for defect prediction also have
used Eclipse as the case study, giving additional insights into
the role of various code and process metrics in the Eclipse
product line. D’Ambros, Lanza and Robbes analyzed three
large Java software systems, including Eclipse JDT Core
3.3, using regression modeling, and found correlations be-
tween change coupling (files that change together) and de-
fects [7]. They found that Eclipse classes have, on aver-
age, many more changes and more shared transactions than
classes in the other two systems studied. Kim, Cai and Kim
recently found that the number of bug fixes in three large
open-source systems, one of them Eclipse JDT, increases af-
ter refactorings [15]. Schroter, Zimmerman and Zeller found
that their predictive models (regression models and support
vector machines) trained in one version can be used to pre-
dict failure-prone components in later versions (here, from
version 2.0 to 2.1 of Eclipse) [33]. Eaddy et al. found a
moderate to strong correlation between scattering (where
the implementation of a cross-cutting concern is scattered
across files) and defects for three case studies, one of which
was an Eclipse component [8]. Shihab et al. reported work
to minimize the number of metrics in their multivariate lo-
gistic regression model [34]. In a case study on the Eclipse
dataset in [38], they identified four code and change metrics.
One change metric, i.e., total prior changes in the 6 months
before the release, was in their short list.
There has been a significant amount of work in the area

of fault-proneness and/or failure-proneness prediction (of-
ten referred to as defect prediction) for both open-source

and commercial software. With regard to open-source sys-
tems, Mockus, Fielding and Herbsleb [21] investigated the
effectiveness of open-source software development methods
on Apache in terms of defect density, developer participa-
tion and other factors. They showed that for some mea-
sures of defects and changes, open-source systems appear
to perform better while for other measures, the commer-
cial systems perform better. Paulson, Succi and Eberlein
[29] compared the growth pattern of open-source systems
with that for commercial systems. They found no signifi-
cant difference between the two in terms of software growth,
simplicity and modularity of code. They found, however,
that in terms of defect fixes, open-source systems have more
frequent fixes to defects. Rahmani, Azadmanesh and Najjar
compared the prediction capability of three reliability mod-
els on failure reports for five open source software systems,
finding that the failure patterns for open-source softwares
follow a Weibull distribution [31].

With regard to commercial systems, Fenton and Ohlsson
[9] related the distribution of faults to failures and the pre-
dictive accuracy of some widely used metrics. They found
that pre-release faults are an order of magnitude greater
than the operational failures in the first twelve months. Lutz
and Mikulski [17] analyzed safety-critical anomalies in seven
spacecraft and found that serious failures continue to occur
with some frequency during extended operations. Recently,
Hamill and Goševa-Popstojanova [13] conducted a study of
two large systems to identify the distribution of different
types of software faults and whether they are localized or
distributed across the system. They analyzed different cate-
gories of faults and their contribution to the total number of
faults in the system. Børretzen and Conradi [4] performed
a study of four business-critical systems to investigate their
fault profiles. They classified the faults into multiple cat-
egories and analyzed the distribution of different types of
faults.

Finally, Nagappan, Ball and Zeller have shown that pre-
dictors obtained from one project are applicable only to sim-
ilar projects [26]. Products in a product line are certainly
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similar (i.e., share commonalities), but further investigation
is needed to understand under what circumstances predic-
tors from one product in a product line are relevant to other
products in the product line.

9. CONCLUSIONS
The work reported here considers Eclipse as an evolving

product line and distinguishes evolution of a single Eclipse
product (Eclipse Classic, Eclipse Java, Eclipse Java EE and
Eclipse C/C++) from evolution of the Eclipse product line.
We study the performance of the J48 learner across these
two evolution dimensions for a large set of change met-
rics available in Eclipse. The motivating questions are: (1)
whether there are any change metrics that serve as good
predictors for individual products as they mature over time,
(2) whether any of these change metrics also serve as good
predictors across all these products as the product line ma-
tures over time, and (3) whether performance improves, i.e.,
whether the ability to predict failure-prone files improves as
the products mature over time.
The results are mixed, but generally positive. The answer

to the first question is that there are change metrics that
perform very well at predicting failure-prone files for the
four Eclipse products studied over the seven releases studied,
spanning 2002-2010. For the first Eclipse product (Eclipse
Classic), the predictor performance was better than in a
previous study for the early releases and improved across
the later releases. Similarly for the other three products,
the predictor performance improved for each product as it
evolved across releases.
The answer to the second question is more complicated.

For each product there was a small, stable set of change
metrics that remained the prominent defect predictors as it
evolved. For all products across all the releases, the change
metrics “maximum changeset”, “number of revisions” and
“number of authors” were in the set of good predictors.
Although the set of good predictors tended to be stable
within each product as it evolved, there were some differ-
ences among the products regarding which change metrics
were in the set of good predictors. Thus, while a small set of
ten change metrics could be identified as prominent across
the product line, only three change metrics were common to
all products.
The answer to the third question is that the predictions

of failure-prone files, both for single products and for the
product line, tended to improve over time. For each of the
four products studied, the predictor performance showed an
overall improvement for accuracy, recall, and false positive
rate. As the product line evolved, accuracy reached above
95% in 2010 for all products, while recall trended upward
to between 78% and 87% for the products, and the false
positive rate decreased nearly uniformly to 1-2%.
It is still unclear whether it will become possible to ac-

curately predict failure-prone files across the products in an
evolving product line. The high level of reuse in product
lines which encourages that hope is offset by the on-going
change and failures seen even in files implementing common-
alities. The results of the current study suggest that further
investigation of failure prediction in both open-source and
proprietary product lines may yield a better understanding
of how evolution of individual products affects the prediction
of failure-prone files within product lines.
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