
ORIGINAL RESEARCH

Using obstacle analysis to identify contingency requirements
on an unpiloted aerial vehicle

Robyn Lutz Æ Ann Patterson-Hine Æ Stacy Nelson Æ
Chad R. Frost Æ Doron Tal Æ Robert Harris

Received: 16 March 2006 / Accepted: 26 September 2006 / Published online: 31 October 2006
� Springer-Verlag London Limited 2006

Abstract This paper describes the use of Obstacle

Analysis to identify anomaly handling requirements

for a safety-critical, autonomous system. The software

requirements for the system evolved during operations

due to an on-going effort to increase the autonomous

system’s robustness. The resulting increase in auton-

omy also increased system complexity. This investiga-

tion used Obstacle Analysis to identify and to reason

incrementally about new requirements for handling

failures and other anomalous events. Results reported

in the paper show that Obstacle Analysis comple-

mented standard safety-analysis techniques in identi-

fying undesirable behaviors and ways to resolve them.

The step-by-step use of Obstacle Analysis identified

potential side effects and missing monitoring and

control requirements. Adding an Availability Indicator

and feature-interaction patterns proved useful for the

analysis of obstacle resolutions. The paper discusses

the consequences of these results in terms of the

adoption of Obstacle Analysis to analyze anomaly

handling requirements in evolving systems.

Keywords Contingency requirements � Obstacle

analysis � Safety-critical software � Requirements

evolution � Autonomy � Anomaly handling

1 Introduction

This paper describes the use of Obstacle Analysis to

identify anomaly handling requirements for a safety-

critical, autonomous system. The software requirements

for the system continued to evolve during operations

due to an on-going effort to increase system robustness.

The objective of the requirements evolution was for the

software to handle more faults and anomalous situations

autonomously. The resulting increase in autonomy also

increased complexity. One risk was that the added

software complexity and interactions would result in

missing, inconsistent, or poorly understood require-

ments for handling anomalies. Obstacle Analysis was

undertaken to mitigate that risk.

The software for the system was developed in incre-

mental builds. Requirements evolved rapidly with

autonomous features being added regularly. Autonomy

is the capability of a software system to make control

R. Lutz (&)
JPL/Caltech and Iowa State University,
226 Atanasoff Hall, Ames, IA 50011, USA
e-mail: rlutz@cs.iastate.edu

A. Patterson-Hine � C. R. Frost
Ames Research Center, Mail Stop 269-4,
Moffett Field, CA 94035, USA
e-mail: apatterson-hine@mail.arc.nasa.gov

C. R. Frost
e-mail: cfrost@mail.arc.nasa.gov

S. Nelson
NelsonConsulting/QSS, Ames Research Center,
Moffett Field, CA 94035, USA
e-mail: NelsonConsult@aol.com

D. Tal
USRA/RIACS at NASA Ames Research Center,
Moffett Field, CA 94035, USA
e-mail: dt97@cornell.edu

R. Harris
255 Group, Inc. at Ames Research Center,
Mail Stop 262-2, Moffett Field, CA 94035, USA
e-mail: trebor@trebor.org

123

Requirements Eng (2007) 12:41–54

DOI 10.1007/s00766-006-0039-4

decisions on its own. An advantage of autonomy in this

system was that it allowed the system to react faster than

with human-in-the-loop controllers to failures, anoma-

lous situations, and changes in environment. With

autonomy, safe operation of the system could continue

even when the human controller was unavailable.

Autonomy can also contribute to system robustness

by detecting and responding to a broader class of

anomalies than just failures. The requirements for

anomaly handling in many safety-critical, autonomous

systems encompass not only traditional fault protection

and responses to undesired events [1] but also unex-

pected environmental or operational scenarios that

could contribute to hazards.

These broader classes of anomalies that must be

anticipated and handled are called ‘‘contingencies’’ [2].

Contingencies include, but go beyond, traditional fault

protection. They are obstacles to the fulfillment of the

system’s high-level requirements that can arise during

real-time operations. Contingency handling involves

requirements for detecting, identifying, and responding

to contingencies.

The application of obstacle analysis in this paper was

to an unpiloted aerial vehicle (UAV) called a rotorcraft

(described in next Section). The system was safety-

critical in that it was required to take off and land

autonomously. Initially flight and landing occurred in

constrained airspace, but eventually will occur in pop-

ulated areas. UAVs are also being developed for safety-

critical applications such as imaging high-risk environ-

ments (e.g., volcanoes and forest fires); detecting acci-

dents in highway traffic, and assisting search and rescue

operations for lost hikers or downed pilots [3].

The fact that the vehicle was already operational

(flying) during most of the process made an early

understanding of contingencies and of their potential

effect on safe flight important to the project. To

achieve the required levels of system robustness, a

structured approach was needed for investigation of

contingency requirements.

Accordingly, we drew on the KAOS framework for

goal-oriented obstacle analysis developed by van

Lamsweerde and Letier. They defined a goal as a set of

desired behaviors and an obstacle as a set of undesir-

able behaviors that impeded a goal [4]. Their goal-

oriented techniques for obstacle analysis have been

previously demonstrated on critical systems such as

ambulance dispatch and the robotic production cell

with good results.

The underlying rationale for the choice of goal-ori-

ented obstacle analysis for the requirements analysis of

the rotorcraft was that contingencies are either obsta-

cles to achieving goals or are indications that the goals

are unrealizable with the available agents. The

requirements evolution in this system was toward more

autonomy. Incremental autonomy, which involves

replacing human agents with software agents, produces

new sub-goals to achieve autonomy, new obstacles

associated with those sub-goals, and additional sub-

goals to resolve those obstacles, as well as new alter-

natives to resolving previous obstacles. All of these

must be investigated if the system is to remain robust.

In the system described here, incremental autonomy

meant that something previously not done automati-

cally now was done by the software. In some cases the

function had previously been done manually by oper-

ator control, while in other cases something that pre-

viously could not be done at all was now done

automatically.

For example, collision avoidance (e.g., of the rotor-

craft with simulated buildings) initially was done via

remote control by a pilot steering the airborne rotor-

craft remotely from the ground. Later, collision avoid-

ance was done by calculating a path around the

buildings before each flight began and then autono-

mously executing the planned path during flight. Still

later, the path-calculation requirements incorporated

new objects that appeared during flight (such as another,

hovering rotorcraft). Future software will autono-

mously plan a path during flight based on real-time

processing of images taken by the rotorcraft’s cameras

and on software that autonomously detects changes in

the imaged scene. As this example demonstrates, any

approach to contingency analysis needed to be readily

extensible and maintainable. We describe in the Impli-

cations For Requirement Evolution section the benefits

and limitations of obstacle analysis in this regard.

One advantage of autonomy is that it adds flexibility

to a mission, e.g., allowing it to take advantage of

unanticipated science opportunities that would be

missed if observations had to wait for human interac-

tion. The work described here is not concerned with

this sort of adaptive re-planning for gain, but solely

with negative contingencies that can place the system

in a hazardous state. Some of the results appear to be

applicable to intelligent systems that re-plan for opti-

mization, but that investigation is beyond the scope of

the work described here.

The paper describes our approach to using obstacle

analysis as a structured way to reason incrementally

about the new requirements and their alternatives. The

contribution of the paper is to report results showing

how obstacle analysis complemented standard safety-

analysis techniques in identifying undesirable behav-

iors and how to resolve them. The lightweight, step-by-

step use of Obstacle Analysis identified potential side

42 Requirements Eng (2007) 12:41–54

123

effects and missing monitoring and control require-

ments. Adding an Availability Indicator and feature-

interaction patterns proved useful for the analysis of

obstacle resolutions. The results suggest that Obstacle

Analysis is an effective and readily adoptable tech-

nique for analyzing anomaly handling requirements in

evolving systems.

The rest of the paper is organized as follows. Section

2 briefly describes the application domain. Section 3

discusses our approach. Section 4 presents the results

of our use of obstacle analysis to identify contingency

requirements. Section 5 discusses the implications of

these findings in terms of requirements evolution and

incremental autonomy. Section 6 puts the results in the

context of recent, related work. Section 7 describes the

verification of the contingency requirements on the

UAV using tool support and simulation. Section 8

provides concluding remarks.

2 Rotorcraft application

This paper describes experience using obstacle analysis

to identify contingency requirements on an UAV

called a rotorcraft. The Autonomous Rotorcraft Pro-

ject (ARP) is a NASA UAV project researching

autonomous, low-altitude, flight systems.

Two small helicopters, originally developed for re-

mote-piloted crop-dusting in farming regions, serve as

the platforms. The autonomous system has an onboard

attitude sensor (accelerometers and gyros), a GPS

sensor, and a communication modem. The rotorcraft

has three cameras—a stereo pair of cameras to provide

input to a passive range estimation algorithm and a

color camera to provide situational awareness. Ground

support is housed in an instrumentation trailer with a

GPS ground station, radio modems for communication

with the aircraft, and video displays of the camera

images. Additional description appears in [5].

We performed contingency analysis on two sub-

systems with safety-critical functionality (communica-

tions and vision) recommended by the project. Our

involvement began about the time that the rotorcraft

began regular autonomous flights within a constrained

airspace with autonomous collision-avoidance path-

planning around stationary objects such as simulated

buildings. The size of the vision-related code at this

time was about 36 K source lines of code. This number

did not include open-source camera drivers or the

messaging system. The project involved a tight-knit

team of experts working together with strong technical

leadership. Most of our knowledge of the system came

from participation in weekly team meetings and from

discussions with the experts on the team rather than

from limited project documentation.

The project considered contingency analysis of the

communications sub-system to be important because

many UAVs currently rely upon flight termination

(including hard landings commanded over the radio

channel) to stop the vehicle in case of failure of the

wireless communication channel. Improved software

contingency handling for communications failure

would make it possible for the UAV to fly to a safe

rally point (a pre-designated location) and land nor-

mally. The project also considered contingency analysis

of the camera sub-system (the cameras and range

finders) to be important. This was because the cameras

have mission-critical responsibilities during some

operations and because the cameras provide backup

position or ranging information when other compo-

nents fail.

3 Obstacle analysis approach

Our approach in the work described here was to use a

simplified version of the KAOS framework developed

by van Lamsweerde and Letier for goal and obstacle

analysis to guide the requirements analysis. The reader

is referred to [4, 6, 7] for a detailed account of the goal-

oriented approach. Our application of obstacle analysis

to the problem was informal and manual. The use of

obstacle analysis met the criteria for lightweight

applications of formal methods to requirements mod-

eling described by Easterbrook et al. [8] in that the

obstacle analysis was applied in response to an existing

development problem, applied selectively to only some

critical portions of the requirements, offered only a

partial solution without guarantees of completeness or

correctness, and fed back into the development process

to improve the product.

In the rest of this section we give a brief, step-by-

step account of our adaptation of the obstacle analysis

framework to the project. In the following sections we

will describe the results of applying the obstacle anal-

ysis and evaluate our use of the goal-obstacle frame-

work.

3.1 Step 1. Identify the goals

A goal defines a set of desired behaviors. Goal-oriented

requirements engineering organizes goals in an AND/

OR structure (a directed acyclic graph). The AND

nodes refine the goals into sub-goals both of which must

be satisfied, and the OR nodes provide alternative ways

to meet the goals. Refinement continues until a sub-goal

Requirements Eng (2007) 12:41–54 43

123

(a terminal goal) can be achieved by an agent. Software

requirements are terminal goals assigned to software

agents.

3.2 Step 2. Identify the agents

Agents (e.g., human operators, hardware devices, or

software components) are active objects to whom the

implementations of the sub-goals are assigned (note

that this definition of an agent differs from the notion

of autonomous software agents. In the goal-oriented

approach an agent may or may not be software, and

may or may not be autonomous).

3.3 Step 3. Identify the obstacles

An obstacle describes a set of undesirable behaviors.

For example, an obstacle to the goal ‘‘Store Camera

Images in Memory’’ is ‘‘Images Exceed Available

Memory.’’ This type of obstacle is called a ‘‘non-sat-

isfaction’’ obstacle since it obstructs the satisfaction of

a goal [4]. Obstacles cover a broad space of possible

barriers to achieving required functionality. Contin-

gencies are obstacles that can occur during real-time

operations, including failures, and other anomalous

events or scenarios.

Like goals, obstacles are organized and refined in

AND/OR structures, and are associated with the goals

they impede. The example in [4] uses a table to specify

the goals, assigned agents, and obstacles for the system

being analyzed (the London Ambulance System).

Obstacles usually are associated with terminal goals,

i.e., goals assigned to individual agents. Obstacle

refinement patterns, described both formally and as

heuristics of the form ‘‘if the specification has such or

such characteristics then consider such or such type of

obstacle to it,’’ are also described there. We report

experience with these refinement patterns below.

3.4 Step 4. Identify alternative resolutions

to the obstacle

Once obstacles have been identified, they need to be

resolved. There are some standard strategies to resolve

the obstacles [4]. For example, to eliminate the

obstacle, we can consider getting rid of the goal that it

obstructs, assigning a different agent so that the

obstacle does not occur, adding a new goal to require

that the obstacle be avoided, changing (or ‘‘de-ideal-

izing’’) the goal, or changing the domain such that the

obstacle can no longer occur. Another strategy is to

just tolerate the obstacle. This might be done by adding

a new goal (e.g., a new requirement for contingency

handling) to mitigate the consequences of the obstacle,

or just by deciding to accept the occasional occurrence

of the obstacle.

3.5 Step 5. Select a resolution among

the alternatives

Obstacle resolution involves evaluating and selecting

from among the available alternatives. As we will see,

this often involved the generation of new sub-goals to

eliminate, reduce, or tolerate the identified contin-

gency. These resolutions yielded new software

requirements when assigned to software agents.

4 Results: contingency requirements from obstacle
analysis

In this section we describe the results from the use of

obstacle analysis to identify anomalies that could occur

during operations and how they could be handled by

software in the existing system. The results show that a

key benefit came in the improved analysis of alterna-

tive solutions to contingencies.

4.1 Goal and agent identification

The first steps toward obstacle analysis were to identify

the goals and agents. In this system the goals and

agents were usually well-understood and already re-

fined to the necessary level. As input to the obstacle

analysis, we thus produced only those portions of the

goal-graph about which there was some confusion or

disagreement among developers. This was done in or-

der to facilitate review of accuracy by experts.

For example, Fig. 1 shows the top nodes in a goal

graph for three-dimensional collision avoidance that

was developed for one such discussion (where there

was confusion about details of the stereo world view at

a lower level). For most goal specifications, however,

we used architectural diagrams, state diagrams, and

functional dependency graphs that we had earlier

produced rather than producing a separate goal-graph.

This exploitation of existing project artifacts worked

well. The decision not to produce a complete goal-

graph meant that the obstacle analysis was less rigor-

ous, with no formal proofs of completeness possible.

However, obstacle analysis explicitly supports the

possibility of such lightweight applications as a way to

guide inquiry into potential obstacles [4]. In our case,

iterative project review of our specifications gave some

assurance that we had adequately captured the goals

and sub-goals.

44 Requirements Eng (2007) 12:41–54

123

What this means for other projects is that applying

obstacle analysis techniques seemed to be a practical

way to investigate software requirements for contin-

gency handling even when the project had not previ-

ously used a goal-oriented approach. Existing project

documentation and artifacts (e.g., fault trees and

requirements specifications) may suffice as initial input

to the obstacle analysis process. This, in turn, can en-

able even projects not developed using goal-oriented

requirements engineering to benefit from the struc-

tured investigation of exceptional behavior performed

during obstacle analysis.

With regard to agent identification, the rapid evo-

lution of the system meant that both new software

agents (autonomous features), as well as new hardware

agents (sensors, cameras, range-finders, etc.) were

regularly being integrated into the operational flight

system. We discuss the effect of this on the obstacle

analysis in Implications for Requirements Evolution

section.

4.2 Obstacle identification

To help identify obstacles to the high-level require-

ments for communication and vision, we used Bi-

Directional Safety Analysis [9]. We selected BDSA

because it combines a forward analysis (from potential

failure modes to their system effects) with a backward

analysis (from the failures to their contributing causes).

The forward analysis is similar to a Software Failure

Modes, Effects, and Criticality Analysis (SFMECA).

The backward analysis is similar to a Software Fault

Tree Analysis (SFTA). The combination of the for-

ward and backward analyses has proven to be a pow-

erful way to identify and understand the causes of

software-associated failures in systems. Previous uses

of BDSA include validating fault protection software

on two spacecraft and analyzing thruster failure modes

on a third [9, 10].

We first performed a forward analysis of the com-

munications and camera sub-systems, as requested by

the project. The SFMECA structured the investigation

of possible failures. For each input it considered the

effect of its absence, corruption, or untimely arrival.

The SFMECA also investigated what would happen if

the software hung or failed in each state, or if a tran-

sition took it to a wrong state. The SFMECAs re-

mained relatively small (e.g., 21 failure modes for one

goal, 29 for another) because they focused on failure

modes related to specific goals (e.g., two-way commu-

nication between the ground station and the UAV).

Details of the technique appear in [9].

The SFMECA identified several contingencies. For

example, one failure mode that could contribute to

several hazardous scenarios was attaching incorrect

identification data (vehicle pose, attitude, GPS posi-

tion, etc.) to an image. The effect was that the identi-

fication data did not reflect the image content, so could

mislead the software into an erroneous control deci-

sion. Another failure mode involved a failure of image

compression that could result in running out of mem-

ory to store the images needed for safe, autonomous

landing.

Table 1 shows an excerpt from the SFMECA for the

data input ‘‘Request for Image Processing’’ received by

the onboard camera software. The context is that a raw

image is grabbed from the video camera stream and

processed (e.g., compressed) onboard before being

sent to the ground.

To investigate contingencies that did not involve the

failure of single components, we also performed a

backward analysis. SFTA is a graphical decomposition

of a root node into its logical, component preconditions

[9]. The fault trees took as root nodes the negations of

communication and vision-related goals. In some cases

the root nodes were hazards (e.g., collision) that ne-

gated high-level goals (e.g., collision avoidance). SFTA

considered combinations of circumstances that could

together cause a problem. By identifying alternate

ways to get to an undesirable state, the SFTA helped

guide analysis of fault detectability and propagation.

As an example, we consider a portion of the SFTA

for the root node ‘‘Stereo Imaging Failure,’’ shown in

Fig. 2. Both a left and a right image are required for

stereo imaging. The root-node failure occurs when

there is either a Left Image Failure or a Right Image

Failure. However, the left camera is redundant in that

Fig. 1 Goal graph

Requirements Eng (2007) 12:41–54 45

123

there is both a grayscale and a color camera on the left

side. The left image failure thus occurs only when both

these cameras fail. Furthermore, for each camera, an

image failure may occur due to the image being too

dark or to its being too bright (saturated). The SFTAs

anchored the investigation into faults that might pre-

vent the functional requirements, such as stereo

imaging, from being satisfied.

As with the SFMECAs, the number and size of the

SFTAs remained relatively small. This is because the

SFTAs were built primarily to develop understanding

and consensus regarding feasible causes of interference

with the achievement of essential capabilities (such as

adequate imaging to land autonomously). This ap-

proach (targeted use of SFTA to support investigation

of project-selected critical failures rather than at-

tempted coverage of all potential failures) had been

previously piloted on spacecraft software with good

results in terms of cost-effective robustness analysis [10].

The SFTAs also identified environmental and

operational obstacles to fulfilling requirements. For

example, a strong crosswind is an environmental

Table 1 SFMECA for the image-processing request

Item Generic
failure
mode

Failure mode
description

Effects Criticality Mitigation

Request for image
processing

Absent No processing command
received

Raw image not
compressed; buffer
limit could be
exceeded; downlink
stressed

Minor Use default processing;
set default to
‘‘compressed’’ to limit
memory usage and
bandwidth

Request for image
processing

Incorrect Processing settings may
be inappropriate for
conditions

Poor quality; surveillance
mission or autonomous
landing may require
usable image

Minor to
major

Restrict processing
choices based on
available info about
mission, resource
constraints

Request for image
processing

Timing Requested processing
applied to earlier/later
image

Delay in getting usable
image

Minor Time-tag images to detect
discrepancy

Fig. 2 SFTA for stereo
imaging failure

46 Requirements Eng (2007) 12:41–54

123

obstacle that interferes with the camera’s ability to

take images, and thus with its ability to find a safe

landing site. Similarly, accidentally leaving a lens cap

on a camera is an operational obstacle that results in an

all-black, useless image. Among other consequences,

this also interferes with the rotorcraft’s ability to land

autonomously. Leaving the lens cap on is thus a con-

tingency that must be considered. It has, in fact, oc-

curred on other UAVs.

4.3 Obstacle resolution

4.3.1 Identification of alternative resolutions

Three sources were found to be useful in identifying

alternative ways to resolve obstacles. The first two of

these sources were the safety-analysis artifacts, the

SFMECA and the SFTA. The third source was the

generic obstacle resolution patterns described in

Obstacle Analysis Approach section [4].

The SFMECA tables contained a ‘‘Mitigation’’

column that described ways to eliminate or mitigate

the failure mode in each row. The SFTA also identified

alternatives for resolving obstacles since finding a way

to negate leaf nodes removed the occurrence of some

obstacles. The SFTA thus encapsulated information

about the goal being studied (the negation of the root

node); potential obstacles to the goal (the leaf nodes of

the fault tree); and insights into necessary detection

mechanisms (how to determine the occurrence of the

events or conditions in the nodes).

The obstacle resolution patterns also provided

guidance in thinking about possible ways to handle

obstacles. For example, one pattern refers to the situ-

ation where a condition persists for an interval prior to

the obstacle’s occurrence. In that case the obstacle can

be anticipated and perhaps prevented.

The ‘‘Agent Sub-stitution’’ pattern was most fre-

quently applicable to the autonomous handling of

contingencies. This pattern captured how timeliness

obstacles (such as when ground control cannot react

quickly enough) could be resolved by transferring

responsibility to onboard software.

4.3.2 Selection of a resolution among alternatives

Consideration of tradeoffs weighed heavily in the

selection of obstacle resolutions in this application. For

example, there were two different, onboard sensors,

either of which could be used for range finding. How-

ever, they varied significantly in power consumption,

precision, number of data points, range, and position

on the vehicle. Selecting one over the other thus in-

volved a tradeoff analysis either on the part of a

ground operator or on the part of the on-board,

recovery software. Other selections among alternative

resolutions involved tradeoffs between color and in-

creased memory, image compression and CPU usage,

image quality and downlink bandwidth, and number of

stored images vs. the size of images.

4.4 Deriving software requirements

In an example given earlier, where the obstacle to

storing images was ‘‘Images Exceed Available Mem-

ory,’’ alternative resolutions included ‘‘Reduce Num-

ber of Images To Be Stored’’ and ‘‘Reduce Size of

Images To Be Stored’’ (compression). Each of these

resolutions itself involved refinement into several sub-

goals. For example, reduction of the number of images

could be determined by how old the image was or by

some other assigned or calculated priority measure.

The calculated priority could be based on vehicle

location, orientation, and camera-pointing angle or on

the actual content of the image. The first option (pri-

oritizing the images based on location, orientation, and

pointing angle) yielded an approximation to the like-

lihood that the target of interest was captured in the

image; the second option discarded images that did not

include the target.

However, the first option was only feasible if the

camera software could access the GPS data, which it

currently could not. This is an example of what van

Lamsweerde and Letier call the unrealizability prob-

lem, meaning that not all stated goals are realizable by

agents in the system. They give some pragmatic con-

ditions for unrealizability in [6]. For our application,

the two most important conditions were Lack of

Monitorability and Lack of Controllability. We also

added a third condition, Lack of availability.

4.4.1 Missing monitorability requirements

One of the most useful results of the obstacle analysis

approach was in identifying gaps between the capa-

bility of the assigned software agents to monitor for

certain states or events and the need to have them do

so. Most of the new software requirements found

during the contingency analysis involved the depen-

dency of certain detection, isolation, or recovery ac-

tions on specific capabilities that the software currently

lacked. In terms of goal orientation, these goals were

currently unrealizable. Most often these gaps involved

data that the software needed to perform its functions,

such as messages to which it needed to sub-scribe or

resource usage states that it had to track. Identification

Requirements Eng (2007) 12:41–54 47

123

of missing monitor data also added visibility into the

system state and defined the data prerequisites for fu-

ture expansion of autonomy in those sub-systems.

4.4.2 Missing controllability requirements

Similarly, the obstacle analysis identified several in-

stances in which the resolution involved the software

being asked to set the values of variables that it did not

control. For example, the software responsible for

dynamically throttling the writing of images into mem-

ory based on their priority level must be able to control

(i.e., change) the value of the priority threshold for

grabbing images. Another example was that adjusting

the jpeg quality of images in response to a low-light

contingency (e.g., landing at twilight) can only be real-

ized by software that controls the jpeg parameters. Both

monitorability and controllability are important for

establishing the software requirements needed for

consistent increments in software autonomy.

4.4.3 Missing availability requirements

We also found it useful to add a third type of unreal-

izability condition, which we called an Availability

Indicator. This was a textual annotation of an unreal-

izability condition attached to an associated alterna-

tive. The Availability Indicator addressed those

situations in which the preferred alternative was not

yet operational but soon would be. In particular, it

documented whether the component on which a

requirement depended had been installed at that point

in time. In this paper we draw examples both from past

software contingencies and from future, anticipated

contingencies. However, in the rapidly evolving system

it was essential to maintain rigor in checking consis-

tency between a component’s current availability and

use of the software that depended on it.

For example, one obstacle to the goal of wireless

communication that was encountered during opera-

tions was interference from other wireless devices in

the vicinity. Several alternative resolutions existed to

this obstacle: a return to remote (human) piloting,

ignoring the risk (what is called ‘‘live with it’’ in [4]),

creating an operational policy to not use the wireless

channel in crowded environments, or switching com-

munications to an alternate medium. This last alter-

native was the best, but required additional hardware

and software that were not yet available.

In some cases, the resolution itself evolved. Here, in

the short-term, the required response to detection of

wireless interference was for the system to return to

human control. In the long-term, once the new hard-

ware agent and software agent are in place, the re-

quired response will be to switch communication to an

alternate medium.

A single obstacle also sometimes spawned multiple

new software requirements to achieve detection and

resolution. For example, mitigating the obstacle where

images exceed available memory involved both image

compression and a ‘‘cancel’’ command to reverse

acquisition of requested images that were no longer

needed. In other cases one resolution could remove

several obstacles. This was the case, for example, with

the addition of accelerometer data on a previous heli-

copter [11].

4.4.4 Comparision of effort levels

In [12], van Lamsweerde gives a typical distribution of

effort for a medium-sized Goal-Oriented Require-

ments Engineering project. A medium-sized project is

defined there, perhaps optimistically, as 3–8 person

months for all requirements engineering activities.

Under this definition, our project is considered a large

rather than a medium-sized project. We here compare

that distribution with our estimated level of effort on

similar tasks. Because we did not log hours spent on

these sub-tasks, the comparison here is rank-ordered

and anecdotal. Note that, to better match the tasks and

project size listed in [12], we only report on level of

effort prior to the requirements verification using

automated tool support and simulation (reported be-

low in Verifying the Contingency Requirements sec-

tion).

• In [12], ‘‘Modeling goals, objects, agents and oper-

ations’’ took the most time (33%). In large part

because we could leverage artifacts such as Software

Fault Tree Analyses and Software Failure Modes,

Effects, and Criticality Analyses (see Obstacle

Identification section), the modeling itself was not

as time-consuming for us. We would rank it second in

level of effort.

• There, the second-highest effort level (27%) was

‘‘Transcripts, summaries, and elicitation from addi-

tional sources.’’ Unlike the projects in [12], we were

working with a small, cohesive project and did not

have to produce a formal requirements document

in a prescribed format. Documentation was not as

time-consuming and most of our additional sources

were present in group meetings. We rank it fourth

in level of effort.

• The third-highest effort level was ‘‘Interviews’’

(16%) in [12]. Because we depended heavily on

the domain expertise of project members, most of

48 Requirements Eng (2007) 12:41–54

123

our understanding of goals and obstacles came from

group discussions. We would thus also rank this as

third in the level of effort.

• The fourth-highest effort level in the earlier pro-

jects was ‘‘Others.’’ There was no description of the

tasks contained in ‘‘Others,’’ so there is no basis for

comparison. We exclude it here.

• The most striking difference from the projects in

[12] is that while ‘‘Model validation with stake-

holders, negotiation of alternatives, revision, and

documentation’’ was ranked fifth there (9%), we

would rank it first. In particular, understanding, and

correctly expressing the alternative choices for

resolving obstacles took a great deal of effort and

iteration. In addition, while the earlier projects

aimed at a single delivery, we were supporting the

rapid evolution of an operational system toward

greater autonomy, so updates were on-going.

To summarize, the most striking contrast between

the typical project in [12] and ours was that a greater

percentage of our time was spent with domain experts

to understand the obstacles and feasible alternatives, as

well as to understand the implications of future,

incremental autonomy. The value of this comparison

appears to lie primarily in its indication that light-

weight, flexible use of obstacle analysis to leverage

existing project artifacts can save time for the project,

and that, for safety-critical, autonomous systems, the

thorough analysis of alternatives for obstacle resolu-

tion is difficult and time-consuming.

5 Implications for requirements evolution

Systems that experience requirements evolution after

deployment challenge the continued adequacy of pre-

vious anomaly handling strategies. When the evolution

is toward additional autonomy, the challenges are

multiplied. In this section we discuss some ways in

which obstacle analysis can help and some areas in

which more work is needed.

5.1 Validity of existing requirements

must be maintained

When requirements changed, a key use of obstacle

analysis was to confirm that previously existing soft-

ware requirements to detect, isolate, and respond to

contingencies were still valid. This involved checking

that for every previously identified obstacle to a goal

that could still occur, the previously identified resolu-

tion (usually a derived software requirement) could

still handle the obstacle. For example, when the

capability was added for autonomous pivoting of the

vehicle around a target, we had to check that the cur-

rent handling of the obstacle ‘‘communication lost’’

remained valid.

5.2 Evolution tends toward more autonomy

In general, the evolving requirements produced greater

autonomy. Enhancements to the rotorcraft provided

new ways to detect, identify, or respond to existing

contingencies. Often these enhancements resulted in

new sub-goals (added autonomous functionality) and

in new ‘‘OR’’ branches for the obstacle resolution

model (new alternatives for how to handle contingen-

cies). Most typical was the replacement of a sub-goal

leaf node assigned to a human agent by a sub-goal tree

with the new leaf nodes assigned to software agents.

Simple hardware agents (e.g., a camera affixed in

place) tended to be replaced by more sophisticated

hardware agents (e.g., articulated stereo cameras that

swivel up and down) that made feasible new, alterna-

tive monitoring sub-goals for contingency detection, or

alternative control sub-goals for contingency recovery.

New software agents (e.g., the capability to dynami-

cally add collision-avoidance targets to the path-plan-

ning calculation) offered improved autonomous

capabilities for responding to contingencies and re-

sulted in more recovery options.

5.3 Autonomy adds complexity

As more autonomy was required, new obstacles and

dependencies were also introduced. That is, with the

addition of new agent capabilities came the possibility

of new contingences. For example, the addition of a

new laser brought with it the failure modes of the laser

to be considered, as well as whether these failure

modes were detectable on the ground and by onboard

software. Some new agents also resulted in new

requirements for calibration before use.

More interestingly, the evolving requirements en-

tailed the need to identify new feature dependencies

(e.g., between the fidelity of color images and passive-

range algorithms). While the focus of incremental

autonomy tended to be on what was gained in terms of

more robust handling of contingencies, contingency

analysis also looked at the potential risks introduced by

the new software complexity. Contingency analysis

investigated the failure modes for new agents, new

opportunities for feature interactions, and new possi-

bilities for conflicts among goals (most commonly in

terms of resource contention).

Requirements Eng (2007) 12:41–54 49

123

Additional issues such as mixed-initiative control

(where the rotorcraft receives inconsistent commands

from the onboard software, the ground software, and

the remote, human pilot), sensor fusion problems

(where the replacement of a single sensor by a suite of

perhaps heterogeneous sensors requires the software

to compose the data and handle data inconsistencies),

and coordination problems (where a fleet of rotorcraft

must coordinate their movement and resource usage),

were not obstacles in the current system but are po-

tential, future obstacles. Our experience to date leads

us to anticipate that obstacle analysis can scale to ad-

dress the additional complexity in these interactions.

An unexpected finding was that sometimes the

requirements for autonomy were reduced. In these

cases some existing autonomous features were disabled

and some control was moved from the onboard soft-

ware to human ground control. This reduction of

autonomy usually occurred temporarily for a demon-

stration or test of a new component or features. Since

these instances often did not involve a simple rollback

to a previous version but instead used a pruned version

of the current software, verification that the reduced

requirements still maintained the required obstacle

handling had to take place.

5.4 Additional obstacle-refinement patterns

needed

Two areas in which existing obstacle analysis tech-

niques provided only limited guidance for the system

studied were: (1) in analyzing failure isolation and (2)

in identifying feature interactions. With regard to

failure isolation, it was often easier to determine that a

failure had occurred (detection) than it was to figure

out precisely what had happened and how to prevent it

from propagating (isolation). For example, if downlink

communication stopped, it was easy to detect that a

failure had occurred but could be quite difficult to

isolate the problem. We are thus working to extend the

obstacle refinement patterns to more explicitly address

failure isolation issues in this domain.

With regard to detecting interactions as new fea-

tures are added, we found that guidelines described by

Doerr for identification of feature interaction in

product lines were readily extensible to our application

[13]. An example of a guideline that was useful here is

that, if feature B uses feature A, then all features that

also use feature A must be identified (to illustrate,

Doerr gives an example from the mobile phone do-

main, where both sending a short message and placing

a call use the network component. To avoid conflicts, it

is important to identify that both features use the same

component). Doerr’s guidelines supplement the pat-

terns for finding divergence among goals (i.e., incon-

sistencies among goals at a boundary condition) [4] in

identifying feature interactions.

6 Related work

The investigation reported here built on previous re-

sults in requirements evolution. However, our effort

differed from most earlier work in that we focused on

the requirements evolution of a safety-critical system

during post-deployment operations.

Much of the existing work in requirements evolution

addresses the pre-implementation phases of a system.

Goal-oriented requirements engineering techniques

have been widely used to identify, specify, and reason

about software requirements and non-functional goals

[14]. Anton and Potts, for example, have used goals

and obstacle analysis to refine evolving requirements in

a developing system [15]. There have also been studies

describing agile approaches for handling rapidly

evolving systems (e.g., the evolutionary prototyping in

[16]). Such approaches are recommended for market-

driven domains such as e-commerce rather than for

critical systems.

Requirements evolution post-deployment has been

studied primarily from the viewpoint of how it can be

managed. The focus has been on establishing processes

to scope or evaluate proposed changes, e.g., in terms of

traceability [17] or change-impact studies. Similarly,

maintenance methods have tended to focus on classi-

fying and managing requirements changes rather than

on analyzing changes [18, 19].

Feather and Fickas have instead proposed moni-

toring operational systems for mismatches that develop

between the assumptions underlying requirements and

the current environment. They, like us, used goal-ori-

ented requirements engineering to model possible

alternative behaviors. They described ‘‘remedial evo-

lutions,’’ somewhat similar to our evolving obstacle

resolutions, when such mismatches occur [20]. Much

earlier, Heninger reported assembling a list of ‘‘feasi-

ble changes’’ on the A-7 project that might be able, in

the future, to invalidate current fundamental assump-

tions about the system [21]. An example of a feasible

change was ‘‘computer self-test might be required in

the air (at present it is required only on the ground).’’

Berry, Cheng and Zhang have proposed a goal-based

structuring mechanism for investigating requirements

for dynamically adative systems [22]. In other goal-

oriented work on requirements for evolving systems,

Hui, Liaskos, and Mylopoulos have described a

50 Requirements Eng (2007) 12:41–54

123

framework for reasoning about personal, customizable

software [23].

The domain of concern in most requirements evo-

lution work has been the business environment rather

than critical systems, as here. DeLemos, however,

modeled an operational system in which requirements

evolution (automating the self-destruct feature of a

rocket) was structured so that architectural compo-

nents remained unchanged while their interactions

adapted to the changed requirements (specifically,

automating the self-destruct feature of a rocket) [24].

Lutz and Mikulski also showed how requirements

evolved during operations to compensate for safety-

critical anomalies caused by hardware degradation or

the occurrence of rare events in seven spacecraft sys-

tems [25, 26].

Several recent papers described autonomy require-

ments, including fault handling, for existing or planned

space missions [27, 28]. Other researchers, motivated

by problems with fault identification on rovers, have

presented improved algorithms for fault detection or

responses. For example, Dearden et al. generated

contingency plans for rovers in the presence of uncer-

tainty regarding timing and resources [2]. Verma,

Langford, and Simmons present an algorithm for esti-

mating the dynamic state of a system (e.g., fault iden-

tification) from noisy measurements of continuous

variables [29]. The algorithms in these studies suppose

that requirements for fault and contingency monitoring

and handling (the problem addressed in this paper) are

already defined.

A few researchers have specifically addressed safety

in autonomous systems. For example, Fox and Das

described the deployment of software agents for

intelligent decision-making in safety-critical medical

applications [30]. The issue of adjustable autonomy

was raised by Schreckenghost et al. in the context of

space life support systems where a human may need to

override autonomous control when an anomaly occurs

[31]. A European Space Agency ESTEC project

investigated how to ensure safety and dependability of

autonomous space software, based on lessons learned

from non-space autonomous domains [32]. Among

their recommendations is a ‘‘safety bag’’ or safety

supervisor that checks constraints at execution time,

while Failure Detection, Identification and Recovery

(FDIR) is handled by a separate module.

The work described here also builds on previous

work in vehicle health management. Patterson-Hine

et al. investigated potential failures or malfunctions of

engine and thruster components on a helicopter, to-

gether with the effects on the system and the visibility

into faults obtainable on the ground [11]. Whalley et al.

sub-sequently described the challenges involved in

using vehicle health modeling of a UAV to assist in

automated transition from remote control of the

vehicle to computer control [5]. Achieving the transi-

tion will require improved contingency analyses and

helped motivate the work described in this paper.

7 Verifying the contingency requirements

The verification of the identified contingency require-

ments on the rotorcraft involved both model-based

static analysis and dynamic simulation of auto-gener-

ated code implementing the requirements. Since we

were especially concerned with the monitorability,

controllability, and availability of the contingency

requirements, we used the Testability Engineering and

Maintenance System (TEAMS) toolset from QSI [33].

The TEAMS has strong support for the diagnosability

analysis of models, thus allowing verification that all

the data channels needed to monitor and control

behavior (sensor inputs and command outputs) cur-

rently are available in the system. Our use of TEAMS

to analyze the contingencies is described more fully in

[34].

Testability Engineering and Maintenance System is

a commercial tool developed to support the modeling

and diagnosability of avionics and other systems. It

won a NASA Space Act Award and has been suc-

cessfully used in development of the second-generation

reusable launch vehicle [35]. Given the toolset’s

potentially widespread use at NASA, investigation of

the feasibility of integrating obstacle analysis with it

was of special interest.

The contingency requirements for stereo imaging in

the Camera Sub-system of the rotorcraft were de-

scribed in a manually constructed TEAMS model. The

top-level model, a graphical portion of which is shown

in Fig. 3, shows the three cameras (left and right

grayscale and left color), the vision-processing com-

puter, and the range-processing components (not dis-

cussed here). The model was hierarchical with each

component refined at successively lower levels into

sub-components. The lowest level of each sub-com-

ponent also represented possible failures (run-time

obstacles) associated with that sub-component. Test

points were placed in the model to indicate where data

was available to monitor for the occurrence of the

various failures, and commandable recovery actions

were associated with the results of the monitoring

activity. For example, if the image from the Color

Camera was too bright to provide adequate stereo

imaging, the resolution was to desaturate the camera.

Requirements Eng (2007) 12:41–54 51

123

Testability Engineering and Maintenance System

automatically produced a diagnostic tree from the

model that showed an optimized sequence of checks

for the system’s correct functioning together with the

action to take if a check failed. The optimization was

based on user-assigned parameter values such as pri-

ority or resource-usage of the check.

Figure 4 shows a small portion of the diagnostic tree

that was generated by the tool. The labeled box ‘‘5’’

refers to the continuation of this part of the Diagnostic

Tree on other windows. If, with the Right Image hav-

ing failed, we check the Left Image and find that it is

good (left branch of Fig. 4) then we have isolated the

problem to the Right Camera. However, if the Left

Image is also bad (right branch), then the Stereo Pro-

cessing is isolated as the problem source. We used the

tool’s diagnostic-tree capability to help verify the

adequacy of the modeled requirements for monitoring

and resolving contingencies. Failures or anomalies that

could not be distinguished from each other in the as-

modeled system were identified by the tool as an

ambiguity group.

If a failure lacked monitorability (i.e., could not be

uniquely identified with the available data), it appeared

in an ambiguity group. For example, at one point the

as-modeled system lacked the monitoring capability to

distinguish inadequate stereo imaging due to a cam-

era’s dirty lens from inadequate stereo imaging due to

a range-calculation failure. Stereo imaging, it will be

remembered, is a sub-goal of safe, autonomous land-

ing, and both dirty camera lenses and stereo range

calculation are obstacles to this sub-goal. The diag-

nostic tree confirmed that these two obstacles were not

distinguishable in the modeled system at that point in

time. Similarly, inspection of the diagnostic tree could

reveal run-time obstacles that were adequately identi-

fied but that had no associated resolution (e.g., due to

lack of controllability).

To perform dynamic verification of the require-

ments, we developed a translator that took the diag-

nostic tree produced by TEAMS and available in XML

format, and output it in the language of APEX, the

rotorcraft’s autonomous reactive planner [5]. This

permitted a demonstration of hardware-in-the-loop

simulation of the contingency monitoring and contin-

gency-handling requirements.

The checks and resolution actions for handling some

key obstacles to stereo imaging, expressed in the

TEAMS model’s diagnostic tree and auto-translated

into the planner’s language, were executed on the

rotorcraft while it was functioning but on the ground.

Some obstacles to stereo imaging in the demonstration

were the left grayscale camera failing; the backup, left

color camera being too dark for good imaging; and the

color camera becoming saturated (too bright). Obsta-

cles were simulated (e.g., by manually covering the lens

Fig. 3 Top-level TEAMS
model

Fig. 4 Excerpt from a
Diagnostic Tree

52 Requirements Eng (2007) 12:41–54

123

cap to cause an all-black image) and the adequacy of the

monitorability, controllability, and availability require-

ments for these contingencies was verified. This simple

verification, while it found no additional requirements

issues, showed the feasibility of integrating early

obstacle analysis with sub-sequent tool-based modeling

and automated output to the system’s reactive planner.

8 Conclusion

The results reported here indicate that the use of

obstacle analysis to reason about software requirements

for handling contingencies has several advantages.

Obstacle analysis gives a structured way to reason

incrementally about new alternatives for handling con-

tingencies that can occur during operations. The

capacity for incremental reasoning is especially impor-

tant in systems that are both currently operational and

evolving rapidly to add autonomous features.

Obstacle analysis also supports evaluation of the

continued validity of existing software contingency

requirements as the system and the requirements

evolves. The cyclical nature of goal-oriented require-

ments engineering, in which new goals are introduced

to resolve an obstacle, but must then also be included

in an iterative analysis for new risks, is a good match

with safety-critical systems whose requirements con-

tinue to evolve after deployment.

We made several minor adjustments to the standard

form of obstacle analysis to better fit our focus on

contingencies. First, we found that existing safety-

analysis artifacts (SFMECA and SFTA) were useful

and efficient baselines for identification and refinement

of obstacles. This suggests that it may be relatively easy

for projects that already produce traditional safety-

analysis documentation to adopt obstacle analysis to

supplement their existing analysis techniques. Second,

we added to the analysis of alternative obstacle reso-

lutions an explicit indicator of whether the required

agent was currently available. This was because some

alternatives for contingency detection and handling

were not currently feasible in the system, but would be

so in the near future. Third, we found a need for

additional attention to feature dependencies and to

fault-isolation problems, and are working to extend the

obstacle-refinement patterns in those directions.

The objective of the requirements evolution was for

the software to handle more faults and anomalous

situations autonomously. By supporting the identifica-

tion of software contingency requirements, obstacle

analysis contributed to the building of a more robust

system.

Acknowledgments The research described in this paper was
carried out in part at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National
Aeronautic and Space Administration and funded by NASA’s
Office of Safety and Mission Assurance Software Assurance
Research Program. The first author’s research is supported in
part by National Science Foundation Grants 0204139, 0205588,
and 0541163. The authors thank Matt Whalley and the other
members of the Autonomous Rotorcraft Project team for shar-
ing their expertise and enthusiasm. The authors thank QSI for
assistance with the TEAMS toolset. The first author also thanks
Martin Feather and Axel van Lamsweerde for insightful feed-
back on an early draft.

References

1. Parnas DL, Wurges H (2001) Response to undesired events
in software systems. In: Hoffmann DM, Weiss DM (eds)
Software fundamentals, collected papers by David L. Parnas,
Addison-Wesley, Reading, pp 231–246

2. Dearden R et al (2002) Contingency planning for planetary
rovers. In: Proceedings of the 3rd Int’l NASA workshop
planning and scheduling for space, Houston

3. Johnson T, Sutherland H, Bush S (2001) The TRAC mission
manager autonomous control executive. In: Proceedings of
the IEEE aerospace conference, Big Sky, MT, USA

4. van Lamsweerde A, Letier E (2000) Handling obstacles in
goal-oriented requirements engineering. IEEE TSE
26(10):978–1005

5. Whalley M, Freed M, Takahashi M, Christian D, Patterson-
Hine A, Schulein G, Harris R (2003) The NASA/Army
autonomous rotorcraft project. In: Proceedings place of
American helicopter society 59th annual forum, Phoenix,
AZ, USA

6. Letier E, van Lamsweerde A (2002) Agent-based tactics for
goal-oriented requirements elaboration. In: Proceedings of
the 24th ICSE. ACM Press, New York, pp 83–93

7. Letier E, van Lamsweerde A (2002) High assurance requires
goal orientation. In: Proceedings of the international work-
shop requirements for high assurance system, Essen, Ger-
many

8. Easterbrook S, Lutz R, Covington R, Kelly J, Ampo A,
Hamilton D (1998) Experiences using lightweight methods
for requirements modeling. IEEE Trans Softw Eng 24(I):4–
14

9. Lutz R, Woodhouse R (1997) Requirements analysis using
forward and backward search. Ann Softw Eng 3:459–475

10. Lutz R, Shaw H-Y (1999) Applying adaptive safety analysis
techniques. In: Proceedings of the 10th international sym-
posium software reliability Eng (ISSRE’99), Boca Raton,
FL, USA

11. Patterson-Hine A, Hindson W, Sanderfer D, Deb S,
Domagala C (2001) A model-based health monitoring and
diagnostic system for the UH-60 Helicopter. In: Proceedings
of the American helicopter society 57th annual forum. AHS,
Washington

12. Van Lamsweerde A (2004) Goal-oriented requirements
engineering: a roundtrip from research to practice. In: Pro-
ceedings of the 12th IEEE international requirements engi-
neering conference, Kyoto, Japan

13. Doerr J (2002) Requirements engineering for product lines.
Diploma thesis, University of Kaiserslautern

14. Mylopoulos J, Chung L, Yu E (1999) From object-oriented
to goal-oriented requirements analysis, CACM 31–37

Requirements Eng (2007) 12:41–54 53

123

15. Anton A, Potts C (1998) The use of goals to surface
requirements for evolving systems. In: Proceedings of the
20th ICSE, Computer Society, Silver Spring, pp 157–166

16. Carter A, Anton A, Dagnino A, Williams L (2001) Evolving
beyond requirements creep: a risk-based evolutionary pro-
totyping model. In: Proceedings of ISRE, Toronto, Canada,
pp 94–101

17. Cleland-Huang J, Chang C, Christensen M (2003) Event-
based traceability for managing evolutionary change. IEEE
Trans Softw Eng 29(9):796–810

18. Bennett K, Rajlich V (2000) Software maintenance and
evolution: a roadmap. In: Finkelstein AF (ed) The future of
software engineering. ACM Press, New York, pp 75–87

19. Lehman MM, Ramil JF (2001) Rules and tools for software
evolution planning and management. Ann Softw Eng 11:15–
44

20. Feather M, Fickas S (1995) Requirements monitoring in
dynamic environments. In: Proceedings of the ICRE, York,
UK, pp 140–147

21. Heninger K (2001) Specifying software requirements for
complex systems: new techniques and their application. In:
Hoffmann DM, Weiss DM (eds) Software fundamentals,
collected papers by David L. Parnas. Addison-Wesley,
Reading, pp 111–135

22. Berry DM, Cheng BHC, Zhang J (2005) The four levels of
requirements engineering for and in dynamic adaptive sys-
tems. In: Proceedings of the workshop on the design and
evolution of autonomic application software, St Louis, MO,
USA

23. Hui B, Liaskos S, Mylopoulos J (2003) Requirements anal-
ysis for customizable software goals-skills-preferences
framework. In: Proceedings of the 11th IEEE international
requirements engineering conference (RE’03), Monterey
Bay, CA, USA, pp 117–126

24. deLemos R (2000) Safety analysis of an evolving software
architecture. In: Proceedings of the 5th IEEE International
symposium high assurance systems, Computer Society, Silver
Spring, pp 159–167

25. Lutz R, Mikulski I (2003) Operational anomalies as a cause
of safety-critical requirements evolution. J Syst Softw
65(2):155–161

26. Lutz R, Mikulski I (2004) Empirical analysis of safety-critical
anomalies during operations. IEEE TSE 30(3):172–180

27. Brat G, Drusinsky D, Giannakopoulou D, Goldberg A,
Havelund K, Lowry M, Pasareanu C, Venet A, Visser W,
Washington R (2004) Experimental evaluation of verifica-
tion and validation tools on Martian rover software. Formal
Methods Sys Design 25(2–3):167–198

28. Chien S et al (2001) Onboard autonomy on the three corner
sat mission. In: Proceedings of the international symposium
AI, robotics, and automation for space. IEEE, Montreal

29. Verma V, Langford J, Simmons R (2001) Non-parametric
fault identification for space rovers. In: Proceedings of the
international symposium AI and robotics in space, Montreal,
Quebec, Canada

30. Fox J, Das S (2000) Safe and sound, artificial intelligence in
hazardous applications. AAAI Press, Menlo Park

31. Schreckenghost D, Malin J, Thronesbery C, Watts G,
Fleming L (2001) Adjustable control autonomy for anomaly
response in space-based life support systems. In: IJCAI-01
workshop autonomy, delegation and control: interacting with
autonomous agents, Seattle, Washington, USA

32. Software product assurance for autonomy on-board space-
craft, European space agency ESTEC. ftp.estec.esa.nl/pub/
tos-qq/qqs/SPAAS/StudyOutputs

33. Qualtech Systems Inc, http://www.teamqsi.com
34. Lutz R, Patterson-Hine A, Bajwa A (2006) Tool-supported

verification of contingency software design in evolving,
autonomous systems. In: Proceedings of the 17th IEEE
international symposium software reliability engineering
(ISSRE’06), Raleigh, NC, USA

35. Dixon RW, Hill T, Williams KA, Kahle W, Patterson-Hine
A, Hayden S (2003) Demonstration of an SLI vehicle health
management system with in-flight and ground-based sub-
system interfaces. In: Proceedings of the IEEE aerospace
conference, Big Sky

54 Requirements Eng (2007) 12:41–54

123

	Using obstacle analysis to identify contingency requirements �on an unpiloted aerial vehicle
	Abstract
	Introduction
	Rotorcraft application
	Obstacle analysis approach
	Step 1. Identify the goals
	Step 2. Identify the agents
	Step 3. Identify the obstacles
	Step 4. Identify alternative resolutions �to the obstacle
	Step 5. Select a resolution among �the alternatives

	Results: contingency requirements from obstacle analysis
	Goal and agent identification
	Obstacle identification
	Obstacle resolution
	Identification of alternative resolutions
	Selection of a resolution among alternatives

	Deriving software requirements
	Missing monitorability requirements
	Missing controllability requirements
	Missing availability requirements
	Comparision of effort levels

	Implications for requirements evolution
	Validity of existing requirements �must be maintained
	Evolution tends toward more autonomy
	Autonomy adds complexity
	Additional obstacle-refinement patterns needed

	Related work
	Verifying the contingency requirements
	Conclusion
	Acknowledgments
	Sec28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

