
Product-Line-Based Requirements Customization
for Web Service Compositions

Hongyu Sun1, Robyn Lutz1,2 and Samik Basu1
1Department of Computer Science, Iowa State University

Ames, IA, 50011-1040, USA
2Jet Propulsion Laboratory/Caltech
{sun, rlutz, sbasu}@cs.iastate.edu

Abstract

Customizing web services according to users’

individual functional and non-functional requirements
has become increasingly difficult as the number of
users increases. This paper introduces a new way to
customize and verify composite web services by
incorporating a software product-line engineering
approach into web-service composition. The approach
uses a partitioning similar to that between domain
engineering and application engineering in the
product-line context. It specifies the options that the
user can select and constructs the resulting web-
service compositions. By first creating a web-service
composition search space that satisfies the common
requirements and then querying the search space as
the user selects values for the parameters of variation,
we provide a more efficient way to customize web
services. A decision model, illustrated with examples
from an emergency-response application, is created to
interact with the customers and ensure the consistency
of their specifications. The capability to reuse the
composition search space may also help improve the
quality and reliability of the composite services and
reduce the cost of re-verifying the same compositions.

1. Introduction

Commercial web services often have a very large
user base. How to customize these web services
according to the users’ individual requirements
becomes increasingly difficult as the number of users
increases. This paper introduces a new way to
customize composite web services to users’
requirements by applying a software product line
engineering approach to the web service composition
domain.

Most existing practical mechanisms for
synthesizing composite services have been deployed

taking into consideration their desired functional
requirements [1, 7]. Functional requirements (FRs)
describe how a system should behave during operation,
while non-functional requirements (NFRs) describe
constraints on the quality attributes of the system’s
operation. NFRs can be broadly classified as soft and
hard constraints. Hard constraints refer to the set of
NFRs that must be satisfied by a composite service,
while soft constraints deal with user preferences and
trade-offs among NFRs [6]. In this paper, we are
concerned with hard constraints.

In order to customize a web service in a specific
domain application (e.g. a travel agency service), FRs
and NFRs may both vary somewhat among
individuals. With existing methods of composing web
services on FRs and NFRs [2, 7], the verification of the
variations in the services tends to incur a heavy
overhead that can reduce the performance of the
composed services. We instead seek to exploit the
reuse of certain web service compositions, where their
composition has already been verified. The goal is for
each small variation to no longer trigger an entirely
new verifiable composition process. Thus, for
customizable web services, we need a lightweight and
low-overhead solution to generating web service
compositions satisfying users’ customized
requirements.

A web service composition shares several
similarities with a product line. A commercial web
service provider has a specified, shared set of
functional and non-functional requirements that should
be fulfilled by every possible service composition
provided to the user. For example, a travel agency web
service has to include a membership service and a
payment service as common functionalities. Secured
web service communication is also a common NFR
that exists in all compositions.

These common FRs and NFRs can be mapped to
commonalities in a product line by taking all possible
compositions that satisfy the common FRs and NFRs

as products of a product line. Each user of the web
service can impose customized FRs and NFRs,
according to his or her own preference, within the
variations provided by, e.g., the travel-agency service.
Thus, a user may require flights to be on a specific
airline or airplane model for the flight-booking service.
These variations in FRs and NFRs, if predictable by
the service provider, can be specified as variabilities of
a product line. The user then only needs to decide the
value for each variation point in order to generate a
customized service composition.

In previous work [2], we have separated the
verification of NFRs for a web service composition
from the verification of FRs in order to reduce the
complexity of requirements verification. In pursuing a
two-stage solution we have subsequently tried to
isolate the requirements likely to be changed, or
customized, by the users. Product line engineering
offers a strong framework for this purpose.

Software product line engineering (SPLE) identifies
the common assets of a series of products as
commonalities and views the optional and alternative
assets as variabilities. Taking advantages of these two
concepts, SPLE reduces the development cost and time
by reusing the commonalties and the variabilities
across the product line [3]. We build in this work on
the FAST (Family-Oriented Abstraction, Specification,
and Translation) approach to constructing a product
line. FAST uses three key artifacts to enable rapid
generation of a product given a partially ordered
specification from the customer [3][4]:
1. The commonality and variability analysis

(CVA), which identifies the commonalities and
variabilities for the product line and the
dependencies and constraints among them.

2. The mapping relations between the values of the
variations and the modules of the product lines
(which may be one-to-one, one-to-many, or
many-to-many mappings) and the uses-relations
of the modules and their implementations
(which describe the other modules used if one
module is selected). For example, one module
may have different ways of being implemented
under the constraints of performance or
platforms.

3. The decision model with which the customer
interacts to specify and construct a new product
in the product in the product line.

We extend the process by adapting the workflow
used to compositionally generate a product-line system
to the customized composition of web services:
• The user decides the values of the variabilities of a

product in either a random or preferred sequence.

• The values of these variabilities are used to prune
and determine other variabilities by following the
dependencies and constraint rules.

• A consistent value set for the variabilities is thus
obtained. By tracing the mapping between the
values of variabilities and the components of the
product line, a component set is selected.

• By tracing the uses-relations of the selected
component set, all necessary components for a
product are selected.

• The implementation of the necessary component
set is gathered, compiled and published as the final
product.

Web service composition takes advantage of SOA
(Service Oriented Architecture) [5] to achieve complex
functional and non-functional requirements by
selecting and composing qualified component services
provided by service providers. A service broker
(UDDI) is responsible for the registration and look-up
of all component services with descriptions.

By considering a customizable web service
composition as a product line, we are better able to
handle the customized requirements from the users.
Normally, web service compositions involve
verification of the functional and non-functional
requirements on demand. This means that whenever
there is a variation, change, or new requirement for the
services, the composition algorithm needs to re-
compose and re-verify the web services against the
variation, change or new requirement.

Using the SPLE approach, we show how we can
successfully divide the composition and verification
process into two stages. The first stage treats the
construction of the functional commonalities of the
web service compositions and verifies them against the
common NFRs. The second stage takes as input the
verified compositions from the first stage and then
verifies the candidate composition in the result set to
meet the variable functional and non-functional
requirements from the user.

Since part of the computation has already been done
in the first stage as pre-processing, the verification
overhead caused by the customizations in the mass-
user-based web services is much lower than the
traditional one-stage composition and verification
process. The two-stage SPLE approach has better
efficiency because, for a customization requirement,
the second stage acts like a service composition
verifier rather than a service composition generator. It
essentially hides the large computation overhead in the
first stage when constructing the search space for the
second stage.

The rest of the paper is organized as follows.
Section 2 introduces related work that helps in
understanding our work. Section 3 describes our

approach to applying SPLE to web service
composition and illustrates it by application to an
emergency-response service. Section 4 discusses the
advantages and limitations of our approach and
describes the steps needed for future evaluation.
Section 5 provides a brief conclusion.

2. Related Work

Two types of web service composition mechanism

are widely used: the choreography-based composition
and the orchestration-based composition [1]. The
choreography-based composition assumes that there is
a central controller, the choreographer, to interact with
each component services and the service user. The
orchestration-based composition is more like a peer-to-
peer network. The component services directly interact
with each other without a center that manages all the
transactions. In BPEL4WS, this is realized by
automated execution of the service workflow. In this
work we use choreography-based composition. More
information on web service composition can be found
in the surveys by Duster and Schreiner [1], Kohler and
Srivastava [7] and Milanovic and Malek [8].

Web service composition can be divided into two
problems from the viewpoint of the requirements: how
to compose services with the functional requirements
and how to compose services with the NFRs. For web
service composition on functional requirements,
Foster, Uchitel, Magee and Kramer [9] introduced a
model-based approach (LTSA-WS) to verifying the
composition implementations. All coordination and
obligation specifications were modeled in message
sequence chart (MSC) and then translated into finite
state process (FSP) algebra. The verification
mechanism was a trace equivalence check [10].

Pathak, Basu and Honavar [11] introduced a tool-
supported approach (MoSCoE) for web service
compositions. It uses a forward-backward web service
composition algorithm to verify functional
requirements and some non-functional properties. The
functional requirements are represented by the goal
automaton. Later work [2] further explored the
verification of NFRs by also modeling the NFRs as
automata. The NFRs were verified by composing the
property automata with the service automata.

By treating web service compositions as a product
line, we can apply approaches in software product line
engineering (SPLE) to the web service composition
domain. SPLE takes advantage of the concept of
commonalities in a product family to form a product
line. By distinguishing the commonalities and
variabilities, a product in the product line can be
viewed as reuse of the common assets with different
variable assets.

The SPLE process consists of two phases: domain
engineering phase and application engineering phase.
In order to simplify the product generation process and
hide the background complexity, a decision model is
created during the domain engineering phase and
reused during the application engineering phase. We
here use the fully constructed decision model
introduced in [4] with all its background relation
models to generate verifiable compositions of
customizable web service families.

Several researchers have applied product line
engineering (PLE) to the web service domain in
different ways. Karam. Dascalu, Safa, Santina and
Koteich, [12] incorporated PLE into web service-based
applications (WSbWAs)s. The web applications
benefited from the reconfigurable, reusable pages,
workflows and web services (WebPads as composite
web services). These supported the common artifacts
of the web development domain and the particular
aspects of the application in the domain. Their work
focused on the reuse of functionalities during product
evolution rather than on the NFRs of the web
applications.

Balzerani, Di Ruscio and Pierantonio [13] followed
the FODA (Feature-Oriented Domain Analysis) [14]
approach to SPLE to construct a reusability-oriented
web application architecture. It took the bounded input
parameters of the functional methods as variation
points. New requests from the user were considered as
different variation values for the product line to enable
both design time reconfiguration and runtime
reconfiguration. However, this work lacked a clear
explanation of the domain engineering phase to
distinguish the commonalities of the web applications
from the variabilities.

Capilla and Topaloglu [15] introduced a way of
applying SPLE into web service composition. The
authors identified types of variation points that can be
used in a web service based product line: the order of
the composition in an orchestration composition, the
flow conditions in a message path, the service
alternatives, the exception handling possibilities and
the quality of service choices. These types of variations
served to customize web services during the design and
implementation phases.

Our work continues the idea of applying SPLE
approaches to solve existing problems in web service
composition. The goal here is to improve the
customization efficiency of domain-specific, mass-user
based, customizable web services. By constructing a
decision model [3, 4], we can hide the complexity of
domain and application knowledge from the user and
give the user a trouble-free way of generating a
customized web service. By distinguishing the
commonalities and the variabilities of the web services,

we can successfully divide the web composition into
two stages: the preparation stage (to construct all
commonalities) and the customization stage (to set all
variabilities). We thus draw most of the computation
overhead into the first stage during the design to enable
improved runtime efficiency during the second stage.

3. Approach

Figure 1 shows an overview of our approach, which
is described briefly here. Subsequent subsections
provide a more detailed account of each of the major
steps in Fig. 1. The steps are labeled in the figure with
the number of the subsection that describes that step.

Our approach contains two workflows, one for the
web service product developer (shown at the top of the
figure) and one for the user (shown at the bottom). This
approach provides a two-stage process. From the point
of view of product line development, the development
process is divided into the domain engineering phase
and the application engineering phase. From the point
of view of web-service design, the process is divided
into the preparation stage (before implementation) and
the customization stage (after implementation).

At the top half of the figure, i.e., the domain
engineering phase, the developer performs a
commonality and variability analysis (CVA) of the
system requirements. The results of the CVA include a
formalized specification of all the common and
variable functional and non-functional properties. Each
variability has some associated parameters to configure,
called parameters of variation. Some of these
parameters may have dependencies or tradeoffs with
other parameters of variation. We model this
dependency of variations in a variability dependency
graph.

Each commonality and parameter of variation is
also associated with a set of service compositions that
satisfy them. We call this relation the mapping-relation.
The results of the CVA are captured in a product-line
decision model. Given the system requirements, the
developer can identify the component web services that
are relevant to the domain and the system.

For the application engineering phase, the services
retrieved from the service broker are composed
according to the common functional requirements by
means of a modified version of the goal model and a
functional service composition algorithm from [16].
The algorithm outputs all possible service
compositions that satisfy the common functional
requirements. By verifying all the compositions of this
set against the common NFRs, we prune the
composition set into a smaller set in which each
composition satisfies all commonalities. This set serves

as the composition search space for the variability, and
we call it the commonality composition set (subset).

Figure 1. Overview of Approach

In order to improve the verification efficiency for

the runtime customization, we do an indexing on each
parameter of variation mapping to a subset of the
search space. A composition subset associates with a
parameter of variation if and only if all compositions in
this subset satisfy the variability set by this parameter.
The result of this preparation phase is the composition
search space that is ready for runtime user
customization.

After implementation of the web services, the user
can access a default web service with basic
functionalities. The user can then customize the
functionalities and non-functional properties by setting
all the parameters of variation in the decision model.
By interacting with the decision model, the input
requirements from the user are always kept consistent
through solving the constraints in the variability
dependency graph. The consistent specification of the
variabilities is fed into a query algorithm to search
valid compositions in the composition search space.

The output of this algorithm is either the customized
service composition satisfying all the requirements
from the user or a report to the user of a failed
composition attempt.

3.1 Illustrative Example

We constructed a small system, the Emergency

Management System (EMS), based on [17], to
illustrate the basic concepts of our approach.

EMS consists of several different units: the Field
Officer Service, the Request Dispatch Service
(Dispatcher for short) and services for emergency
handling, including an Ambulance Dispatch Service, a
Fire Station Dispatch Service and a Police Dispatch
Service. The functional requirements are to dispatch
ambulance(s), fire truck(s) and police to a location
upon request. These requests are specified and sent by
the Field Officer through a service in a mobile terminal
or a PDA.

The Dispatcher has three types: the normal dispatch
service, which is responsible for routine situations; the
speed-line dispatch service, which has low
communication delay, compared to the normal
dispatcher and is used for urgent dispatches; and the
highly-secured dispatcher, which is used for national
security related cases. The dispatcher service can also
invoke a GPS-MAP service and other third party
services. Figure 2 shows a sample structure for EMS
service composition. The services connected by the
dashed lines represent the optional services in a valid
composition.

Figure 2. Sample Composition for EMS

3.2 Commonality and Variability Analysis

The commonalities that are shared across all of the
EMS service compositions are listed according to their
label, type (Functional requirements as “FR” and Non-
functional requirements as “NFR”), their description
and their service mappings.
Commonalities:
• C1

o FR
o There must be a Field Officer Service.
o Field Officer Service = any service in Field

Officer Service set {FO1, FO2, FO3…}.
• C2

o FR
o There must be a Dispatcher Service.
o Dispatch Service = any service in normal

Dispatcher Service set {DSN1, DSN2, …} or
speed-line Dispatcher Service set {DSSL1,
DSSL2, …} or Highly-secured Dispatcher
Service set {DSHS1, DSHS2, …}.

• C3:
o FR
o There must be one or more emergency services.
o An emergency service = any service in the Fire

Station Dispatch Service set {FS1, FS2, …} or
in the Ambulance Dispatch Service set {AS1,
AS2, …} or in the Police Dispatch Service set
{PS1, PS2, …}.

• C4:
o NFR
o All services must support at least 128-bit

encryption in its service description.

The variabilities of the EMS are listed according to
their label, type, description, parameter(s) of variation
and any dependencies among these parameters.
Variabilities:
• V1:

o FR
o Type of dispatch service
o {Normal, Speed-line, Highly-secured}.
o If V1 is Highly-secured, then V6 is High. If V1

is Speed-line, V7 is Low.
• V2:

o FR
o Existence of Fire Station Dispatch service
o {True, False}
o If V2 is False, (V3 or V4) is True

• V3:
o FR
o Existence of Ambulance Dispatch service,
o {True, False}.
o If V3 is False, (V2 or V4) is True

• V4:
o FR
o Existence of Police Dispatch service
o {True, False}.
o If V4 is False, (V2 or V3) is True

• V5:
o FR
o Existence and type of a third-party service.
o {N/A, GPS-MAP, TP1, TP2,…}.
o If V5 is N/A, V8 is N/A.

• V6:
o NFR
o Security Level
o {Medium, Med-High, High}.
o If V6 is High, V1 is Highly-Secured and V9 is

256. If V6 is Med-High, V9 is 256. If V6 is
Medium, V9 is 128.

• V7:
o NFR
o Delay of service communication
o {Low, Med-Low, Medium}.
o If V7 is Low, V1 is Speed-line.

• V8:
o NFR
o Range constraint between the field officer and

the emergency service location
o {N/A, Near, Medium, Far}.
o If V8 is not N/A, V5 is GPS-MAP.

• V9:
o NFR
o Type of encryption
o {128, 256}. If V9 is 128, V6 is Medium. If V9

is 256, V6 is Med-High or High.

Figure 3. Dependency graph of variabilities

We model the dependencies of the parameters in the

CVA in a dependency graph (see Figure 3). In the
dependency graph, each node represents a variability
and contains the information of all the parameters
related to this variability. The edges between the nodes

represent and contain the constraints between the two
variabilities. The graph may not be fully connected. A
graph-walk algorithm (described in Section 3.6) is used
to traverse the sub-graphs in a random order or a user-
preferred order to solve all the constraints.

To reduce the workload for the later verification
process, we typically design the parameters of
variation by translating integer or real number values
into enumerated parameters, as is done with the Range
Constraint V8, above. The range can be an integer of
miles from 1 to 100, but is represented as only three
values: Near (within 10 miles), Medium (10 to 50
miles) and Far (51 to 100 miles).

3.3 Goal Model of the Common Functionalities

In order to generate all the service compositions that

satisfy the commonalities, we need to represent the
common functionalities, here C1, C2 and C3, in the
goal model.

Figure 4. Goal Model for Common Functionalities

Figure 4 shows the goal model for the common
functionalities in EMS. Note that we have preserved
the possibility of using third-party services to
implement the functionality ThirdPartyService
(OtherData) in the goal model. The functional
composition process finds appropriate component

services to implement these abstract methods in the
goal model in accordance with the service mapping
table. This service mapping table is constructed
together with the goal model by looking up the CVA
results. For example, a mapping is: ThirdPartyService
= any element from {N/A, GPS-MAP, TP1, TP2, …}.

We apply a variant of the choreography-based web
service composition algorithm from our previous work
[16] on this goal model. The change is that we here
take advantage of the availability of the service
mapping table to generate all the compositions that
satisfy the FR commonalities rather than generating
just one such composition. The result of this step, as
shown in Fig. 1, is a web service Composition Set
containing all compositions satisfying the common
functional requirements.

3.4 Verification Algorithm of Non-functional
Properties

The next step toward constructing a search space is
to verify the common NFRs. The automation in Figure
5 shows an example of an NFR that requires that any
ambulance service in the composition shall respond
within 600 seconds.

Figure 5. Transition guard with constraint on the
service attributes

 In previous work we have described how to model

both a service composition and a non-functional
property as automata and how to verify the NFR
property by composing the two automata [2]. The
verification is an automata equivalence check. This
verification method unifies the property models by
converting all liveness properties into safety properties.
It also handles cases where there are multiple
properties to be verified.

We define a finite state automata as a tuple FSA =
(S, s0, Δ, P, F) where S is the finite set of states, s0 א S
is the start state, and Δ ك S × 2P × S is the transition
relation of the form s − ߶− > ݏᇱ such that s, ݏᇱ א S,
and ߶ Sك 2P is a subset of propositions P. Finally, F א
is the set of final states.

Given two automata, FSAi = (Si, s0i, Δi, Pi, Fi), for i
א {1, 2}, their product is another FSA denoted by
FSA1 × FSA2 = (S12, s012, Δ12, P12, F12), where S12 ك S1
× S2, s012 = (s01, s02), P12 = P1 P2, F12 = {(s1, s2) | s1 א

F1, s2 א F2}. Finally, s1− ߶1 − > ݏᇱ1 א Δ1 and s2− ߶2 − >
 Δ2 and (s1, s2) − ߶1 א ᇱ2ݏ ר .Δ12 א (ᇱ2ݏ ,ᇱ1ݏ) < − 2߶

Figure 6 shows an example of the product of two
automata with the service composition automaton on
the left, the property automation in the middle and their
product on the right. During the calculation of the
automata product, if a trap state of the safety property
is reached, the verification has failed. Otherwise, the
property is satisfied by the candidate composition.

For example, by applying this verification technique
for the common NFR C4 to every composition in the
Composition Set retrieved in 3.3, we prune out any
compositions with service that violates the requirement
for at least 128-bit encryption. The result of performing
this verification on the other NFRs, as well, is a set of
candidate compositions that satisfies all commonalities,
both functional and non-functional, labeled the
Commonality Composition Subset in Fig. 1.

Figure 6. Product of a service composition and a

property

3.5 Search Space Construction by Indexing

In order to construct the composition search space
from the Commonality Composition Subset, we next
need to index every parameter of variation. By
indexing, we mean the creation of a mapping from
each parameter of variation to a further subset of the
Commonality Composition Subset such that that any
composition in this subset satisfies the variability set
by this parameter. To do this, we apply the verification
technique introduced in 3.4 to prune the common set to
this subset. The results are stored in the Search Space
table for each parameter of variation. If the value for a
parameter of variation depends on other parameters of
variation, we also check those dependencies, as shown
in the following example.

Figure 7. Indexing between parameters of
variations and subsets of the Commonality

Composition Subset

Figure 7 shows an example of the mapping relation
for variability V6 created by this indexing process. The
user-selectable parameter of Medium security level
maps to the commonality composition subset shown
with two triangles, each of which represents a
candidate service composition. In order to find these
triangle compositions, we first verify the security level
to find those compositions with a Medium security
level tag in all their services. Next, according to the
dependency graph, a Medium security level requires an
encryption length of 128 bits, so we verify whether all
these compositions also have 128-bit encryption.

After creating the indexing for the parameters, the
construction of the composition search space is
completed and the application-engineering phase, i.e.,
the generation by the user of a service composition that
verifiably satisfies his/her customized requirements,
begins.

3.6 Solving Constraints

The user customizes the service composition’s
functional and non-functional requirements by setting
the parameters of variation. However, since the user
cannot be expected to handle the possibly complex
dependencies among the variabilities, a specification
from the user inputs may not guarantee consistency
among the parameters. For example, an inconsistent
specification is shown in Table 1. A Low parameter in
the communication delay variability V7 constrains the
choice of the Dispatch Service to be Speed-line rather
than a normal one. In this case, the specification cannot
result in a valid service composition.

Instead, in order to ensure the consistency of the
user’s choices, a dependency graph walking algorithm
is used (here, to Fig. 3) to interact with and guide the

user in solving the constraints. The constraint solving
algorithm is as follows:

1. User picks a variability to start the process
2. User decides the parameter for this variability.
3. Locate the node of this variability in the

dependency graph.
4. Check and apply the constraints on all the edges

of current node. If the constraints force a
variation value on any other node(s), mark them
as explored.

5. Walk to the next unexplored node in the sub-
graph and iterate from step 2.

6. If all nodes of the current sub-graph have been
explored, pick a next sub-graph and start from
step 2.

7. If all sub-graphs have been explored, then all
constraints in the dependency graph have been
solved.

Table 1: Excerpt of inconsistent specification

Variability Value Constraints
V1 Normal If V1 is Highly-secured, V6 is

High. If V1 is Speed-line, V7
is Low.

V7 Low If V7 is Low, V1 is Speed-
line

Without the product line concept of a dependency

graph, the constraints among the different properties
would have to be solved later during the properties’
verification using higher-overhead verification
techniques such as the one introduced in section 3.4.
Solving the constraints using a dependency graph is
more efficient than detecting the inconsistency in the
later verification phase. Moreover, we will need this
consistent specification to apply the query algorithm to
the composition search space in the next step.

3.7 Query the Composition Search Space

We now query the composition search space to find
the subset of compositions that satisfies each user-
selected variation parameter. Because the construction
of the search space in the previous step has verified
that the remaining compositions satisfy the common
requirements and that the user’s selection of
variabilities is consistent, we need only to perform a
simple look-up in the Search Space Table. Table 2
continues our example, showing two queries on the
parameters of V1 and V7.

Table 2: Sample query in the composition search
space

Variability Value Composition

Subset
V1 Speed-line CSet1
V7 Low CSet2

We note that since (V1=Speed-line) and (V7=Low)
have already been shown to be consistent by the
constraint solving in section 3.6, if any element of
CSet1 satisfies V1=Speed-line and any element of
CSet2 satisfies V7=Low, then any element of
CSet1רCSet2 satisfies (V1=Speed-line) and (V7=Low).
More generally: For any two properties P1 and P2, if
P1 and P2 are consistent or independent, and any
composition in SetA satisfies P1 and any composition
in SetB satisfies P2, then any composition in SetA ר
 SetB satisfies both P1 and P2.

3.8 User Customization

The user can customize the web service
functionalities and its NFRs by setting the values for
the variabilities. However, we need to make sure these
values of the parameters are consistent with each other
and do not violate any constraint identified in the CVA.
To do this, we use a decision model. The structure of
the decision model is shown in Figure 8. A decision
model [4] is a user-friendly front-end model that
consists of the commonalties, the variabilities, the
parameters of variation together with their
constraints/dependencies, the mapping relations and
the algorithms to handle these complex relations. In
both the product line and web-service context it
interacts with the user and generates the user preferred
product.

To customize the service composition, using
prompts from the constraint solving algorithm in Sect.
3.6, the user successively selects values for the
parameters of variation until all variabilities have been
decided. The workflow for making decisions using the
decision model is:
1. Apply constraint solving algorithm (3.6) to interact

with the user.
2. Report failure if no valid consistent specification

exists with the current user decisions and starts over.
3. If a consistent value set of the variabilities is

obtained, query the search space with these
parameters to retrieve a set of composition subsets.

4. Compute the conjunction of the composition
subsets. If the conjunction yields a non-empty set,
any composition in this set will satisfy the user’s
common and variable (customized) FRs and NFRs.

If the conjunction is an empty set, it means no
composition satisfies all the user’s requirements.

5. Output the result. In the case of a non-empty set, we
use the composition with the least services to avoid
redundant services.

Figure 8. Structure of the decision model

4. Discussion

The approach in this paper introduced the FAST
process for developing software product lines into the
web-service composition domain. For customizable
compositions of web services, the partitioning of the
service composition into a domain engineering and an
application engineering phase, as is done in product
line development, allows us to first compose services
that verifiably meet the common FRs and NFRs
needed by all the customers of the service, and then to
add on and similarly verify each customer’s selected
set of variations. The construction of the compositions
as product-line assets supports their repeated reuse for
commercial, mass-user services.

By incorporating product-line-like artifacts, this
approach focuses on the reuse of the existing, verified
compositions. It appears likely that this reuse will be
able to reduce the time required to generate a verifiable
user customization. To test this we plan to implement
this conceptual approach on a mass-user service model.
An experimental evaluation is needed to test this and to
explore tradeoffs between the number of user
customizations and number of possible variations for
which it is advantageous to accept the overhead of
creating the product-line artifacts (CVA, dependency
graph, and decision model). Apart from improved
efficiency, the product-line approach may also promote
service quality. Measurement of historical user
preferences can be used to predict future usage;
measures of user satisfaction can help guide evolution
of the services as new variations are introduced.

Future work is also needed to handle recoverable
failures. That is, given a user’s customized set of
functional and non-functional requirements, our

approach identifies a candidate set of compositions that
satisfies them, if that is possible. While the decision
model currently offers the user a single composition, it
should also be possible to implement a strategy to
remember the alternative compositions as “cold stand-
bys”. In the case of service failure, an alternative
would then be recalled to replace the failed
composition, so as to increase the reliability of the
service.

5. Conclusion

This paper introduces a new approach to
customizing the functional and non-functional
requirements of a web service composition by
incorporating software product line engineering
techniques into the web service domain. By following
the product line engineering procedures, the web
service compositions in the search space of a
commercial service provider can be more readily
composed, verified, and reused in the presence of users’
personal selections of their preferred variations. .

This approach creates a two-phase solution for
efficiently handling mass-user service customization: a
preparation phase in which the composition search
space is constructed, and an implementation phase in
which the web service composition is customized. We
anticipate that the preparation phase will occur off-line
and that the customization phase will occur at runtime.
Most of the computational overhead of verification is
here pulled into the preparation stage. The runtime
verification for the user’s customization requirements
(the selection of variations) is thus simplified. A
product-line decision model hides the background
relations, the dependency models and the verification
algorithms from the user. The decision model interacts
with the user to maintain a consistent set of customized
requirements and to generate a more convenient and
efficient experience of service customization.

6. Acknowledgement

This research is supported by NSF grants 0541163
and 0702758.

7. References

[1] S. Dustdar and W. Schreiner, “A survey on web services

composition”, Int’l Journal of Web and Grid Services,
Vol. 1, No.1, 2005, pp. 1–30.

[2] H. Sun, S. Basu, R. Lutz and V. Honavar, “Automata-
Based Verification of Non-Functional Requirements in
Web Service Composition”, Dept. of Computer Science

Technical Report, Iowa State University, 2009,
submitted.

[3] D. M. Weiss and C. T. R. Lai, Software Product Line
Engineering, Addison Wesley Longman, 1999

[4] D. M. Weiss, J.J. Li, H. Slye, T. Dinh-Trong and H.
Sun, “Decision-Model-Based Code Generation for
SPLE”, Proc. 12th International Software Product Line
Conference (SPLC), 2008, pp. 129-138.

[5] T. Erl, Service-oriented architecture: concepts,
technology, and design, Prentice Hall, 2005.

[6] L. Chung. B. A. Nixon, E. Yu and J. Mylopoulos, Non-
Functional Requirements in Software Engineering,
Springer, 1999.

[7] J. Koehler and B. Srivastava, “Web service composition:
Current solutions and open problems”, ICAPS
Workshop on Planning for Web Services, 2003, pp. 28-
35.

[8] N. Milanovic and M. Malek, “Current Solutions for
Web Service Composition”, Internet Computing,
Nov/Dec 2004, Vol. 8, No. 6, pp. 51-59.

[9] H. Foster, S. Uchitel, J. Magee and J. Kramer, “LTSA-
WS: a tool for model-based verification of web service
compositions and choreography”, 28th Int’l Conf on
Software Engineering (ICSE), Shanghai, China, 2006,
pp. 771-774.

[10] H. Foster, S. Uchitel, J. Magee and J.Kramer, “Model-
based Verification of Web Service Compositions”, 18th
IEEE Int’l Conf on Automated Software Engineering
(ASE), Montreal, Canada, 2003, pp. 152-163.

[11] J. Pathak, S. Basu and V. Honavar, “Modeling Web
Services by Iterative Reformulation of Functional and
Non-Functional Requirements”, 4th International
Conference on Service Oriented Computing, Chicago,
USA, December 4-7, 2006, pp. 314-326.

[12] M. Karam, S. Dascalu, H. Safa, R. Santina and Z.
Koteich, “A product-line architecture for web service-
based visual composition of web applications”, Journal
of Systems and Software, Vol. 81. Issue 6, 2008, pp.
855-867.

[13] L. Balzerani, D. Di Ruscio, A. Pierantonio, G. De
Angelis, “A product line architecture for web
applications”, Proc. ACM Symposium on Applied
Computing (SAC2005), pp. 1689–1693.

[14] K. Lee K. C. Kang, M. Kim and S. Park,
“Combining feature-oriented analysis and aspect-
oriented programming for product line asset
development”, Proc. 10th International Software
Product Line Conference (SPLC), 2006, pp. 102-112.

[15] R. Capilla, and N.Yasemin Topaloglu, “Product lines
for supporting the composition and evolution of service
oriented applications”, Proc. 8th Int’l Workshop on
Principles of Software Evolution, pp. 53–56.

[16] J. Pathak, S. Basu, Robyn Lutz and V. Honavar,
“Parallel Web Service Composition in MoSCoE: A
Choreography-based Approach”, 4th IEEE European
Conference on Web Services, 2006, pp. 3-12.

[17] B. Bruegge and A.H. Dutoit, Object-oriented Software
Engineering: Using UML, Patterns and Java, Prentice
Hall, 2003, pp. 181-196.

