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Abstract. The design and operation of long-lived, sustainable systems (LSS) 
are hampered by limited support for change over time and limited preservation 
of system knowledge. The solution we propose is to adopt software product-line 
engineering (SPLE) techniques for use in single, critical systems with 
requirements for sustainability. We describe how four categories of change in a 
LSS can be usefully handled as variabilities in a software product line. We 
illustrate our argument with examples of changes from the Voyager spacecraft.  
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1   Introduction 

Sustainable: “meets the needs of the present without compromising the ability of 
future generations to meet their own needs”  

- UN Brundtland Report, on sustainable development [1] 
 
Our society is becoming increasingly dependent on software-intensive sustainable 

systems. Examples include embedded medical devices, web-based archives, 
interplanetary spacecraft, power grid monitors, telecommunication switches, and 
sensor networks. Future examples include nuclear power plants, health databases, and 
global networks of solar arrays, perhaps in orbit. Many such systems are safety 
critical, with varying degrees of autonomy. They typically evolve over long periods of 
time in response to changed needs, new technologies, and failed components. 

We consider a sustainable system to be one that has the following attributes. 
• It has an extended lifetime,  
• It makes efficient use of resources to achieve its goal. 
• It maintains its capabilities despite obstacles and failures. 
• It is adaptable, so as to accommodate change, and is expected to evolve with   

changes in technology and requirements.  
More broadly, a sustainable system is forward-looking and is structured so as to 

guide future decisions. The goal of evolving over time to meet changes in technology 
and requirements, distinguishes sustainable systems from legacy systems. 
Accordingly we use the term long-lived, sustainable systems, or LSS, for them. 



In this paper our perspective is the preservation of system knowledge over time in 
the service of handling change (both anticipated and unanticipated) in LSS. While the 
preservation of knowledge and change handling are not unique to LSS, extended LSS 
lifetimes exacerbate the problems. LSS have a longer period of operations over which 
both planned and unplanned change can occur. Their long operational periods are 
accompanied by considerable personnel turnover, resulting in knowledge loss that 
complicates operations and adaptive maintenance. Historically, these inadequacies 
have jeopardized LSS [2]. Their design and maintenance is challenged by the need to 
envision, plan for, and handle on-going change, and to preserve and pass on the 
knowledge needed to do so.  

The problem, then, is how to better design and operate a LSS to preserve system 
knowledge and to support needed changes over time. The solution we propose is to 
adopt software product-line engineering (SPLE) techniques for use in single LSS, an 
adoption that we believe is natural to both. SPLE provides a process framework to 
identify, document, and make decisions regarding alternatives now and in the future, 
taking into consideration their risks, dependencies and consequences, both in cost and 
value. It focuses on sustaining artifacts and domain knowledge over a long haul. 

Change can be usefully treated as variability, and SPLE handles variability well. 
To illustrate this we discuss examples of anticipated and unanticipated changes from 
the twin Voyager spacecraft, launched in 1977 and still actively collecting science 
data. We show how Voyager “did it right” in planning and organizing for change, and 
in maintaining system knowledge. 

We suggest that the lessons to be learned from Voyager regarding the design and 
operation of a LSS system are not just consistent with software product line 
engineering but are, in fact, most readily transferable to other LSS in the context of 
SPLE techniques. SPLE describes how a set of similar systems—a software product 
family—develops over time.  We treat an evolving LSS as if it were a set of similar 
systems that developed over time. (In fact, PLE also evolves over space, that is, there 
may be several products in a product line that are produced and maintained 
concurrently, so our problem is simpler.)  This paper thus proposes to apply SPLE 
techniques to single systems, where those single systems must be long-lived and 
sustainable, and presents, in the context of Voyager, the advantages of doing so.  

2   LSS Example: the Voyager Spacecraft 

The two Voyager spacecraft, launched in 1977 and now the farthest human-made 
objects from Earth, are among the best-known LSS. The spacecraft continue to return 
truly invaluable data as they approach the heliopause. For example, Voyager 2 
recently discovered a strong magnetic field that holds the interstellar cloud together 
[http://voyager.jpl.nasa.gov/]. The Voyagers are expected to continue to communicate 
until loss+ of power and fuel mutes them around 2020. The spacecraft have efficiently 
used their early-1970’s era resources to adapt to a changing set of ambitious scientific 
goals. The spacecraft software has also been repeatedly changed to handle failed 
components and reduced power. Voyager did not explicitly use software product line 
engineering. However, viewed in retrospect, Voyager exemplified the SPLE process 



of carefully identifying possible variations that might be needed in the future, of 
designing a modularized architecture that would allow those anticipated changes to be 
made, and of specifying the constraints that would guide the decisions to be made. 
Voyager also demonstrated that even unanticipated change is made easier when a 
serious effort has been made to design for possible future changes.  

3   SPLE for LSS Change Management 

The software product line engineering FAST process, used here, identifies, 
distinguishes, and documents what is assumed to stay the same (across systems and 
time) and what may change [3, 4]. It relies on three artifacts: (1) a 
commonality/variability analysis that formally specifies the allowable range of values 
for each variability, the constraints among the choices of value for the variabilities, 
and the binding time for each variability; (2) a modularized architecture with a 
mapping between modules and the commonality/variability specifications described 
above; and (3) a specification, called a Decision Model, of the partially-ordered 
sequence of choices that must be made to build a new product, subject to the 
constraints and binding times specified earlier.  

Some required behavior must be invariant for a LSS to succeed. For example, a 
software requirement that has to be satisfied throughout the lifetime of the Voyager 
spacecraft is that it shall be able to communicate with Earth and automatically detect 
and respond to a loss of uplink from Earth. Similarly, a LSS is built and operated on 
certain assumptions regarding those things that will not change (e.g., in the 
environment). Such assumptions can usefully be modeled as commonalities. Note 
also that if the assumptions later become false, we have a way in FAST to document 
both what the change is and why the change occurred, preserving knowledge and 
providing guidance to later generations of maintainers, as suggested in [5].  

We next describe how the handling of both anticipated and unanticipated change 
can be improved by the use of software product line engineering techniques. 

3.1   Anticipated Changes 

We can anticipate some changes that will likely be made during the lifetime of a LSS. 
Several standard techniques assist in this identification: investigation by domain 
experts, experience with similar systems, goal/obstacle analysis, defect patterns in 
similar systems, and analysis of previous changes. On spacecraft, we know that if 
hardware breaks, the software will often have to be updated to take on the required 
capability previously allocated to hardware [2]. Similarly, we know that as different 
mission phases are reached (e.g., launch, interplanetary cruise, orbital insertion) the 
software will need to be updated. In LSS, many of these changes will be made to 
handle failure or degradation of hardware components. 

Such anticipated changes can usefully be modeled as product line variabilities in 
the commonality/variability analysis. The FAST process documents the envisioned 
ranges of optional and alternative requirements and parameters. Making an 
anticipated change after launch then becomes analogous to taking a different path 



through the Decision Model. In so doing, you use the Decision Model to check that 
the impact of the change is acceptable, based on the constraints between the proposed 
alternative and the choices implemented earlier to produce the existing product. This 
provides some assurance that the software architecture can accommodate the change. 
Checking the constraints can often be partially or fully automated.   

Modifiability, or “changeability”, is a defining attribute for a LSS. In [6], the 
quality attributes of modifiability are organized into four categories: (1) extensibility 
(changing capabilities, adding new functionality, repairing bugs); (2) deleting existing 
capabilities; (3) portability (adapting to new operating environments); and (4) 
restructuring (modularizing, optimizing, or creating reusable components). 

We describe critical changes that occurred on the Voyagers during operations for 
the first three of these categories. Because of page limits, we exclude the fourth 
category here, but note that several subsequent spacecraft re-used Voyager hardware 
and software. We interleave examples from the two spacecraft, despite some small 
differences between them. For each change, we show how it fits into a SPLE context. 

Anticipated extensibility: At launch, the Voyagers’ authorized flight plan included 
only Jupiter and Saturn, primarily for budget reasons. However, the spacecraft had 
been designed for extension to take advantage of the fact that Jupiter, Saturn, Uranus 
and Neptune were aligned, something that happens once every 175 years. When the 
flight was extended for the “Grand Tour” to all four planets, the architectural design 
was in place to allow this. Note that the cost of designing for this extensibility was far 
outweighed by the value of the scientific knowledge gained from it. 

Anticipated deletion: It was known that each instrument drawing significant power 
would have to be turned off at some point, as the onboard battery capacity decreased. 
For example, the cameras were turned off in 1990 after the last planetary encounter. 
Weighing the tradeoffs and deciding when in the mission to turn each instrument off 
was a complicated task, but made possible by anticipating its need.   

Anticipated portability: A new algorithm was required to obtain images at 
Neptune. Without it, the low sunlight levels, combined with the torque imparted when 
the tape recorder was turned on and off, would have caused images to be smeared. 
The new feature automatically fired the attitude jets to compensate for the spacecraft 
torque at the longer exposure rate. 

3.2   Unanticipated Changes 

Unanticipated change is a problem for any system. SPLE provides a structure for 
dealing with unanticipated change as well as anticipated change. In particular, it 
allows one to reason about the effects, dependencies, and risks of a proposed change.  

Unanticipated extensibility: In 1987, a new science opportunity appeared. A 
supernova occurred that Voyager could observe. Software commands were thus 
designed and sent to the UV spectrometer to capture data from the stellar explosion, 
taking advantage of a design that anticipated the need to reprogram the spacecraft. 

Unanticipated deletion: Slewing rates for the scan platform (containing the 
cameras, etc.) were unexpectedly restricted by a new project policy for the planetary 
encounters of Uranus and Neptune. The change was in response to an earlier incident 
where the platform jammed, likely induced by a period of heavy usage. 



Unanticipated portability: Soon after launch, Voyager 2’s primary receiver failed 
and its backup receiver was reduced to “hearing” in a very narrow, changing 
frequency band. To compensate, a new ramping algorithm was quickly designed and 
implemented, so that prior to sending any software commands to the spacecraft, 
ground operations could tune the transmission to the receiver’s current state.  

SPLE excels at identifying what needs to be known and storing it so that the new 
customer (here, the spacecraft team) need only be concerned with the information 
preserved in the structures, rather than having to learn all the underpinnings of the 
system. Because the system is specified and designed for change, new personnel 
know where to look to understand the system and the implications of change.  

4   Conclusion 

Our hope is that use of SPLE techniques will make it easier to make changes to LSS 
where the value/cost ratio is high, as it is on spacecraft and other critical or one-of-a-
kind systems. It remains to test this hypothesis, perhaps as a shadow effort with an on-
going LSS project. In particular, we think that these SPLE techniques will be easy to 
use and fit in readily with the way sustainable projects work. 

The benefits that we anticipate may accrue from the use of SPLE for LSS include:  
• Improved preservation of project knowledge over extended lifetimes, leading 

to lower cost to maintain. 
• Better capture of assumptions (commonalities) and dependencies among 

choices (variabilities) that can help reduce risk of change. 
• Increased emphasis on investigating and ranking possible changes and on 

verifying architectural support for modifiability.  
• Viewing potential changes as options that, when exercised, can bring high 

value, and so merit investment to preserve the needed information.  
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