
Software Product Line Engineering for Long-lived,
Sustainable Systems

Robyn Lutz1,2, David Weiss1, Sandeep Krishnan1, Jingwei Yang1

1 Department of Computer Science, Iowa State University
2 Jet Propulsion Lab/Caltech

{rlutz, weiss, sandeepk, jwyang@cs.iastate.edu}

Abstract. The design and operation of long-lived, sustainable systems (LSS)
are hampered by limited support for change over time and limited preservation
of system knowledge. The solution we propose is to adopt software product-line
engineering (SPLE) techniques for use in single, critical systems with
requirements for sustainability. We describe how four categories of change in a
LSS can be usefully handled as variabilities in a software product line. We
illustrate our argument with examples of changes from the Voyager spacecraft.

Keywords: software product line, sustainable system, long-lived system,
variability, commonality/variability analysis.

1 Introduction

Sustainable: “meets the needs of the present without compromising the ability of
future generations to meet their own needs”

- UN Brundtland Report, on sustainable development [1]

Our society is becoming increasingly dependent on software-intensive sustainable

systems. Examples include embedded medical devices, web-based archives,
interplanetary spacecraft, power grid monitors, telecommunication switches, and
sensor networks. Future examples include nuclear power plants, health databases, and
global networks of solar arrays, perhaps in orbit. Many such systems are safety
critical, with varying degrees of autonomy. They typically evolve over long periods of
time in response to changed needs, new technologies, and failed components.

We consider a sustainable system to be one that has the following attributes.
• It has an extended lifetime,
• It makes efficient use of resources to achieve its goal.
• It maintains its capabilities despite obstacles and failures.
• It is adaptable, so as to accommodate change, and is expected to evolve with

changes in technology and requirements.
More broadly, a sustainable system is forward-looking and is structured so as to

guide future decisions. The goal of evolving over time to meet changes in technology
and requirements, distinguishes sustainable systems from legacy systems.
Accordingly we use the term long-lived, sustainable systems, or LSS, for them.

In this paper our perspective is the preservation of system knowledge over time in
the service of handling change (both anticipated and unanticipated) in LSS. While the
preservation of knowledge and change handling are not unique to LSS, extended LSS
lifetimes exacerbate the problems. LSS have a longer period of operations over which
both planned and unplanned change can occur. Their long operational periods are
accompanied by considerable personnel turnover, resulting in knowledge loss that
complicates operations and adaptive maintenance. Historically, these inadequacies
have jeopardized LSS [2]. Their design and maintenance is challenged by the need to
envision, plan for, and handle on-going change, and to preserve and pass on the
knowledge needed to do so.

The problem, then, is how to better design and operate a LSS to preserve system
knowledge and to support needed changes over time. The solution we propose is to
adopt software product-line engineering (SPLE) techniques for use in single LSS, an
adoption that we believe is natural to both. SPLE provides a process framework to
identify, document, and make decisions regarding alternatives now and in the future,
taking into consideration their risks, dependencies and consequences, both in cost and
value. It focuses on sustaining artifacts and domain knowledge over a long haul.

Change can be usefully treated as variability, and SPLE handles variability well.
To illustrate this we discuss examples of anticipated and unanticipated changes from
the twin Voyager spacecraft, launched in 1977 and still actively collecting science
data. We show how Voyager “did it right” in planning and organizing for change, and
in maintaining system knowledge.

We suggest that the lessons to be learned from Voyager regarding the design and
operation of a LSS system are not just consistent with software product line
engineering but are, in fact, most readily transferable to other LSS in the context of
SPLE techniques. SPLE describes how a set of similar systems—a software product
family—develops over time. We treat an evolving LSS as if it were a set of similar
systems that developed over time. (In fact, PLE also evolves over space, that is, there
may be several products in a product line that are produced and maintained
concurrently, so our problem is simpler.) This paper thus proposes to apply SPLE
techniques to single systems, where those single systems must be long-lived and
sustainable, and presents, in the context of Voyager, the advantages of doing so.

2 LSS Example: the Voyager Spacecraft

The two Voyager spacecraft, launched in 1977 and now the farthest human-made
objects from Earth, are among the best-known LSS. The spacecraft continue to return
truly invaluable data as they approach the heliopause. For example, Voyager 2
recently discovered a strong magnetic field that holds the interstellar cloud together
[http://voyager.jpl.nasa.gov/]. The Voyagers are expected to continue to communicate
until loss+ of power and fuel mutes them around 2020. The spacecraft have efficiently
used their early-1970’s era resources to adapt to a changing set of ambitious scientific
goals. The spacecraft software has also been repeatedly changed to handle failed
components and reduced power. Voyager did not explicitly use software product line
engineering. However, viewed in retrospect, Voyager exemplified the SPLE process

of carefully identifying possible variations that might be needed in the future, of
designing a modularized architecture that would allow those anticipated changes to be
made, and of specifying the constraints that would guide the decisions to be made.
Voyager also demonstrated that even unanticipated change is made easier when a
serious effort has been made to design for possible future changes.

3 SPLE for LSS Change Management

The software product line engineering FAST process, used here, identifies,
distinguishes, and documents what is assumed to stay the same (across systems and
time) and what may change [3, 4]. It relies on three artifacts: (1) a
commonality/variability analysis that formally specifies the allowable range of values
for each variability, the constraints among the choices of value for the variabilities,
and the binding time for each variability; (2) a modularized architecture with a
mapping between modules and the commonality/variability specifications described
above; and (3) a specification, called a Decision Model, of the partially-ordered
sequence of choices that must be made to build a new product, subject to the
constraints and binding times specified earlier.

Some required behavior must be invariant for a LSS to succeed. For example, a
software requirement that has to be satisfied throughout the lifetime of the Voyager
spacecraft is that it shall be able to communicate with Earth and automatically detect
and respond to a loss of uplink from Earth. Similarly, a LSS is built and operated on
certain assumptions regarding those things that will not change (e.g., in the
environment). Such assumptions can usefully be modeled as commonalities. Note
also that if the assumptions later become false, we have a way in FAST to document
both what the change is and why the change occurred, preserving knowledge and
providing guidance to later generations of maintainers, as suggested in [5].

We next describe how the handling of both anticipated and unanticipated change
can be improved by the use of software product line engineering techniques.

3.1 Anticipated Changes

We can anticipate some changes that will likely be made during the lifetime of a LSS.
Several standard techniques assist in this identification: investigation by domain
experts, experience with similar systems, goal/obstacle analysis, defect patterns in
similar systems, and analysis of previous changes. On spacecraft, we know that if
hardware breaks, the software will often have to be updated to take on the required
capability previously allocated to hardware [2]. Similarly, we know that as different
mission phases are reached (e.g., launch, interplanetary cruise, orbital insertion) the
software will need to be updated. In LSS, many of these changes will be made to
handle failure or degradation of hardware components.

Such anticipated changes can usefully be modeled as product line variabilities in
the commonality/variability analysis. The FAST process documents the envisioned
ranges of optional and alternative requirements and parameters. Making an
anticipated change after launch then becomes analogous to taking a different path

through the Decision Model. In so doing, you use the Decision Model to check that
the impact of the change is acceptable, based on the constraints between the proposed
alternative and the choices implemented earlier to produce the existing product. This
provides some assurance that the software architecture can accommodate the change.
Checking the constraints can often be partially or fully automated.

Modifiability, or “changeability”, is a defining attribute for a LSS. In [6], the
quality attributes of modifiability are organized into four categories: (1) extensibility
(changing capabilities, adding new functionality, repairing bugs); (2) deleting existing
capabilities; (3) portability (adapting to new operating environments); and (4)
restructuring (modularizing, optimizing, or creating reusable components).

We describe critical changes that occurred on the Voyagers during operations for
the first three of these categories. Because of page limits, we exclude the fourth
category here, but note that several subsequent spacecraft re-used Voyager hardware
and software. We interleave examples from the two spacecraft, despite some small
differences between them. For each change, we show how it fits into a SPLE context.

Anticipated extensibility: At launch, the Voyagers’ authorized flight plan included
only Jupiter and Saturn, primarily for budget reasons. However, the spacecraft had
been designed for extension to take advantage of the fact that Jupiter, Saturn, Uranus
and Neptune were aligned, something that happens once every 175 years. When the
flight was extended for the “Grand Tour” to all four planets, the architectural design
was in place to allow this. Note that the cost of designing for this extensibility was far
outweighed by the value of the scientific knowledge gained from it.

Anticipated deletion: It was known that each instrument drawing significant power
would have to be turned off at some point, as the onboard battery capacity decreased.
For example, the cameras were turned off in 1990 after the last planetary encounter.
Weighing the tradeoffs and deciding when in the mission to turn each instrument off
was a complicated task, but made possible by anticipating its need.

Anticipated portability: A new algorithm was required to obtain images at
Neptune. Without it, the low sunlight levels, combined with the torque imparted when
the tape recorder was turned on and off, would have caused images to be smeared.
The new feature automatically fired the attitude jets to compensate for the spacecraft
torque at the longer exposure rate.

3.2 Unanticipated Changes

Unanticipated change is a problem for any system. SPLE provides a structure for
dealing with unanticipated change as well as anticipated change. In particular, it
allows one to reason about the effects, dependencies, and risks of a proposed change.

Unanticipated extensibility: In 1987, a new science opportunity appeared. A
supernova occurred that Voyager could observe. Software commands were thus
designed and sent to the UV spectrometer to capture data from the stellar explosion,
taking advantage of a design that anticipated the need to reprogram the spacecraft.

Unanticipated deletion: Slewing rates for the scan platform (containing the
cameras, etc.) were unexpectedly restricted by a new project policy for the planetary
encounters of Uranus and Neptune. The change was in response to an earlier incident
where the platform jammed, likely induced by a period of heavy usage.

Unanticipated portability: Soon after launch, Voyager 2’s primary receiver failed
and its backup receiver was reduced to “hearing” in a very narrow, changing
frequency band. To compensate, a new ramping algorithm was quickly designed and
implemented, so that prior to sending any software commands to the spacecraft,
ground operations could tune the transmission to the receiver’s current state.

SPLE excels at identifying what needs to be known and storing it so that the new
customer (here, the spacecraft team) need only be concerned with the information
preserved in the structures, rather than having to learn all the underpinnings of the
system. Because the system is specified and designed for change, new personnel
know where to look to understand the system and the implications of change.

4 Conclusion

Our hope is that use of SPLE techniques will make it easier to make changes to LSS
where the value/cost ratio is high, as it is on spacecraft and other critical or one-of-a-
kind systems. It remains to test this hypothesis, perhaps as a shadow effort with an on-
going LSS project. In particular, we think that these SPLE techniques will be easy to
use and fit in readily with the way sustainable projects work.

The benefits that we anticipate may accrue from the use of SPLE for LSS include:
• Improved preservation of project knowledge over extended lifetimes, leading

to lower cost to maintain.
• Better capture of assumptions (commonalities) and dependencies among

choices (variabilities) that can help reduce risk of change.
• Increased emphasis on investigating and ranking possible changes and on

verifying architectural support for modifiability.
• Viewing potential changes as options that, when exercised, can bring high

value, and so merit investment to preserve the needed information.

Acknowledgments. This work was supported by grants 0541163 and 0916275 from
the National Science Foundation.

References

1. Our Common Future, Report of the World Commission on Environment and Development,
Oxford University Press, (1987).

2. R. R. Lutz and I. C. Mikulski, Empirical Analysis of Safety Critical Anomalies during
Operation, IEEE Trans. Software Engineering, vol. 30 (3), 172–180, (2004).

3. Weiss, D. M., Lai, C. T. R.: Software Product-Line Engineering, A Family-Based Software
Development Process. Addison-Wesley (1999).

4. Weiss, D. M., Li, J. J., Slye, H., Dinh-Trong, T., and Sun, H.: Decision-Model-Based Code
Generation for SPLE, in SPLC'08, pp. 129-138. (2008).

5. Parnas, D. L., Clements, P. C.: A rational design process: How and why to fake it, IEEE
Trans. on Software Engineering, vol. 12(2), 251-257, (1986).

6. Bass, L., Clements, P. and Kazman, R.: Software Architecture in Practice, Addison-Wesley
(1998).

