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Abstract—Analysis of anomalies that occur during operations is an important means of improving the quality of current and future

software. Although the benefits of anomaly analysis of operational software are widely recognized, there has been relatively little

research on anomaly analysis of safety-critical systems. In particular, patterns of software anomaly data for operational, safety-critical

systems are not well understood. This paper presents the results of a pilot study using Orthogonal Defect Classification (ODC) to

analyze nearly two hundred such anomalies on seven spacecraft systems. These data show several unexpected classification patterns

such as the causal role of difficulties accessing or delivering data, of hardware degradation, and of rare events. The anomalies often

revealed latent software requirements that were essential for robust, correct operation of the system. The anomalies also caused

changes to documentation and to operational procedures to prevent the same anomalous situations from recurring. Feedback from

operational anomaly reports helped measure the accuracy of assumptions about operational profiles, identified unexpected

dependencies among embedded software and their systems and environment, and indicated needed improvements to the software,

the development process, and the operational procedures. The results indicate that, for long-lived, critical systems, analysis of the

most severe anomalies can be a useful mechanism both for maintaining safer, deployed systems and for building safer, similar

systems in the future.

Index Terms—Software and system safety, diagnostics, maintenance process, product metrics.
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1 INTRODUCTION

THE effort to build safe systems benefits from knowledge

of the past. A key part of this knowledge is an

understanding of past safety-critical anomalies. As Leveson

has noted, “feedback of operational experience is one of the

most important sources of information in designing,

maintaining, and improving safety” [21]. The data needed

to pursue this understanding is often recorded, occasionally

analyzed, and too rarely used [4].

The work described here investigates one piece of this

puzzle, namely, safety-critical software anomalies that

occurred during operations. We focus on those situations

that have in the past posed serious threats to the

embedded software systems in an effort to gain insight

into how to build safer systems in the future. Safety-

critical operational anomalies are a source of information

both for trend analysis of the current system and for

improved safety of other similar systems. In this paper, we

focus on the latter role. Feedback from safety-critical,

operational anomaly reports can measure the accuracy of

our assumptions about operational profiles, identify

unexpected dependencies among embedded software and

their systems and environment, and indicate needed

improvements to the software, the development process,

and the operational procedures.
The rest of the paper is organized as follows: Section 2

describes the approach and gives some background
information regarding the anomaly data. Section 3 presents
related work in the area. Section 4 describes the analysis
process. Section 5 presents the results. Section 6 evaluates
the results and considers their implications for safety-
critical systems. Section 7 provides concluding remarks.

2 APPROACH

The data for the analysis of safety-critical operational

anomalies were drawn from an institutional database of

anomaly reports for multiple missions at Jet Propulsion

Laboratory. The reporting mechanism for the anomalies is

an online form called an “Incident/Surprise/Anomaly”

(ISA) report. An ISA consists of three parts. The first part

describes the problem as experienced by the operator. The

second part presents the results of the subsequent analysis

of the occurrence. The third part describes the final

corrective action taken to close out the incident. Until all

three parts are completed and signed, the ISA is said to be

“open.” Additional information regarding criticality, prior-

ity, time and date, subsystem, etc., may be entered into

available fields.
It is worth noting that an ISA is not a defect report. An

ISA is written whenever the behavior of the system differs
from the expected behavior in the eyes of the operator. The
ISA thus provides valuable information regarding gaps
between the requirements as specified and implemented
and the, perhaps different, users’ expectations. The ISA also
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provides a means of documenting near-misses, i.e., high-
consequence failures that almost occurred but were pre-
vented by some fortuitous circumstance (e.g., fault mon-
itoring, contingency commands, a change of mode, etc.). In
some cases, analysis of the near-miss prompted a change to
the flight software requirements to preclude such an
anomaly in the future [23].

The data set analyzed consisted of the 199 critical ISAs
from seven spacecraft that occurred between the launch
date of each spacecraft and 21 August 2001. Table 1 lists
each spacecraft, its primary mission, and its launch data.
The systems were selected for this study to represent a
cross-section of deep-space missions and were all launched
between 1989 and 1999. The selection was made in
accordance with recommendations from the database
administrators regarding their confidence in the quality of
the raw data (i.e., which projects populated the database
most consistently).

The safety-critical anomalies per spacecraft numbered 8,
8, 15, 19, 29, 59, and 61, for a total of 199. The only data
points that were removed from the original data set were
four duplicates.

The criticality level for each ISA was assigned by the
project based on standard classifications [17]. Since there
were slight differences in the processes of the seven projects
regarding which fields of the anomaly reports were used,
we studied all anomaly reports that met one of the
following four, project-assigned criteria in order to assure
coverage of all critical ISAs:

1. high mission risk with significant or catastrophic
risk and uncertain fix,

2. highest level criticality, i.e., unacceptable risk with
no workaround,

3. catastrophic failure effect, and
4. highest priority (“must-fix”) with significant or

catastrophic failure effect.

The term “critical ISAs” refers to anomalies meeting one or
more of these criteria.

The scope of the investigation reported here was to
characterize postlaunch, safety-critical, software anomalies.
The reason for focusing on this small set of anomalies was
that, in order to improve the safety of future missions, we
first examine those anomalies classified as safety-critical in
previous missions. It is expected that additional insights
into operational anomalies could be obtained from studying
noncritical anomalies during operations, as well as from a
comparative analysis of critical and noncritical anomalies.

However, those studies are beyond the scope of the effort
reported here.

The approach selected for the study of the anomalies was
Orthogonal Defect Classification (ODC), described below.
ODC provides a way to “extract signatures from defects”
[5] and to correlate the defects to attributes of the
development process. The problem definition was to
analyze safety-critical, postlaunch spacecraft anomaly data
in order to determine the effects of using the Orthogonal
Defect Classification (ODC) method on the understanding
of flight software anomalies, from the point of view of the
software developers [26]. The pilot-study framework
described by Glass [14] was used to structure the investiga-
tion. This framework consists of 35 steps grouped into the
five activities of planning, designing, conducting, evaluat-
ing, and using the results.

3 RELATED WORK

Our investigation built on an extensive body of work in
defect analysis. The defect analysis technique that we used
as the basis for our investigation of anomalies is Orthogonal
Defect Classification (ODC), developed at IBM by Chillar-
ege et al. [5] in the 1980’s. ODC has been applied for defect
analysis throughout the lifecycle. For example, Chillarege
and Bassin have used ODC to classify software defects
found during field operations [6], Dalal et al. have used
ODC in operational systems but with the purpose of
guiding prerelease process improvement [10], and Chillar-
ege and Prasad have used ODC’s trigger in a retrospective
defect analysis of a Web application’s development aimed
at process improvement [8].

Statistical defect modeling, on the other hand, predicts

the reliability of a software product, typically by measuring

the short-term defect detection rate and estimating the

number of defects remaining or the failure rate of the

software [16], [12]. Bishop and Bloomfield, for example,

used estimates of residual defects to calculate worst-case

probability of survival [3]. Whereas their interest was in

predicting reliability on a project, ours was on characteriz-

ing critical anomalies across projects.

Causal analysis, another widely used defect-analysis

technique, has as its goal to identify the root cause of the

defect and initiate an action so that the source of the defect

is eliminated. In an earlier such study by one of the authors

on spacecraft software, it was found that most of the critical

anomalies during the testing phase involved requirements
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or interfaces [22]. Similarly, when Lauesen and Vinter

looked at 200 of the 800 defect reports available a few

months after a product’s release, they found that missing

requirements were the most frequent cause [19]. However,

when Leszak et al. performed a large, retrospective causal-

analysis study of defects through the load-building phase

(i.e., not during operations), they found that implementa-

tion defects consumed 75 percent of all effort. The defects

were primarily of type algorithm or functionality [20].

Ostrand and Weyuker recently compared pre and post-

release faults to investigate module fault density and fault

proneness in an inventory-tracking system [28]. Unlike the

results reported here, they found very few high-severity

faults postrelease and did not investigate fault causes.
The work described here is unlike these previous studies

in that it combines:

1. investigation of anomalies (including near-misses
and operator confusion) rather than just defects,

2. focus on critical anomalies,
3. consideration of operational (postdeployment)

anomalies, and
4. analysis of anomalies across a set of similar systems.

4 ANALYSIS

Using a nominal-scale classification scheme, each defect

was placed in a particular classification category based on

the value of an attribute [13]. Each classification attribute

and the possible values it could take were defined in a

document. Of the eight original ODC attributes, four were

selected as relevant to the data: Activity, Trigger, Target,

and Type. Very roughly speaking, the Activity during

which the anomaly occurred is the “When” (when the

anomaly surfaced), the Trigger is the “What” (the

environment or condition that had to exist for the defect

to appear), the Target is the “Where” (the entity being

fixed), and the Type is the “How” (the nature of the fix).

The “orthogonal” nature of the attributes comes from

their nonredundancy and the multiple perspectives they

provide. A fifth ODC attribute, Impact, is implicit in our

selection of the data (high-criticality anomalies). The other

three attributes (defect qualifier, source, and age) were

not available in the anomaly reports or were judged to be

not of much relevance (e.g., constant values) in these

systems. The ODC values within classification attributes

required some adaptation to the postlaunch spacecraft

domain. For example, almost all postlaunch ISAs involve

what in ODC terms are system-testing defects, so the

Activity classification had to be made more fine-grained.

Fig. 1 presents the classification attributes and their

possible values.

A preexperiment was performed on a small set of ISAs, in

accordance with Kitchenham’s suggestion [18], to gauge the

experimental power of the approach. Results from the

preexperiment included: 1) more precisely defining the

attribute values so as to improve repeatability among

analysts, 2) supplementing the definitions with examples

from real anomaly data to improve training materials, and

3) adding a comment field to provide an in-process way to
record issues as they arose. The comment field allowed

capture of process observations and explanatory insights

similar to Seaman’s use of field memos to find patterns [29].
We used a three-step process in which 1) two analysts

separately classified the same set of anomalies and entered
the results in a spreadsheet, 2) after highlighting incon-
sistent classifications, each analyst performed a prereview
check, looking at the other analyst’s classifications and
correcting any clear errors in one’s own classifications, and
3) the analysts jointly reviewed the remaining discrepancies
and resolved them through discussion.

Step 1 encouraged accuracy in that the analysts caught

each other’s misunderstandings (e.g., one of us had greater

expertise in ground software and operations, the other one

in flight software and fault protection) and gave us some

measurements of repeatability. Step 2 encouraged rapid

correction of simple errors, e.g., omitted fields due to
interruptions or inattention. Step 3 supported process

improvement by identifying unclear definitions, mis-

matches between the available classification values and

the anomalies’ descriptions, and multiple-valued attributes

(e.g., two triggers, discussed in Section 5.2). Each of the first

two steps took one to three minutes per ISA for each

analyst, and the third step (the review) took about five

minutes jointly for the small set of remaining ISAs for which

the classification values still differed.

5 RESULTS

In this section, we describe the results of classifying the
safety-critical, postlaunch software anomalies according to
the ODC-based technique described above.

After Pareto analysis of the results identified patterns of

interest in the data (unexpected distributions of classifica-

tion values or associations among attribute values), causal

analysis explored possible explanations for why the

patterns occurred. The use of causal analysis to investigate

subsets of defects belonging to patterns of interest is typical

of both ODC [5], [10] and of defect analysis [20], [25]. Often
the diagnosis is performed by experts gathered to investi-

gate the reasons for the patterns and how such patterns of

defects can be prevented or controlled in the future.
Figs. 1 and 2 profile the distribution for Activity, Trigger,

Target, and Type. Computation of the Chi-square statistic
with � ¼ 0:05 for the significance level for each of Activity,
Trigger, Target, and Type, leads us to reject for each the null
hypothesis that the distribution is uniform among possible
values. The following description first combines the results
for all seven projects and then considers the normalized
data for each project.

5.1 Activity

The most frequent Activity was “Flight Operations”
(68 percent) (see Fig. 1). This distribution was expected for
a postlaunch anomaly profile. On the other hand, it might
seem surprising that 29 percent of the anomalies instead
involved system testing. This is, in fact, characteristic of
robotic space missions, which typically require many
updates to the software during their missions. The lifetime
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of a spacecraft is usually measured in years, so, corrective,
adaptive, and perfective maintenance is performed on the
software as the spacecraft proceeds through the phases of its
mission [2]. For example, new software tailored to the next
phase will often be uplinked to a spacecraft’s computers
prior to a navigational special maneuver, orbital insertion
around a planet, sequence of scientific data-gathering, etc.
Each of the planned updates, both to flight and to ground-
support software, undergoes thorough system testing,
usually at least in part subsequent to launch. Similar high
levels of postdeployment maintenance are typical of other
long-lived, high-integrity systems such as implantable
medical devices or power-plant control systems.

5.2 Trigger

The most frequent Trigger (Fig. 2a) was “Data Access/

Delivery” (35 percent).
While it was known that many noncritical anomalies

involved problems with access to science or engineering

data for operations or end-users, it was not expected that

problems with data access were a catalyst for critical

anomalies. The fact that data access and delivery was a

trigger for almost a third of the safety-critical, postlaunch

software anomalies prompted additional analysis, de-

scribed below.
When the Activity was “System Test,” the most frequent

Trigger was “Software Configuration” (20 or 10 percent).

R. LUTZ AND CARMEN MIKULSKI: EMPIRICAL ANALYSIS OF SAFETY-CRITICAL ANOMALIES DURING OPERATIONS 175

Fig. 1. Classification and activity distribution.



These anomalies were caused by configuration manage-
ment problems: files missing from directories, incorrect
versions, problems with builds or deliveries, etc. Again, the
surprise was that these triggered critical anomalies, rather
than being inconveniences without significant conse-
quences. These results suggest that acceptance of config-
uration problems as routine is inappropriate for critical
systems.

We also investigated how often the Trigger for the safety-
critical anomalies is an atypical or unusual situation. The
basis for this query was a 1993 finding by Hecht that “Rare
events were clearly the leading cause of failures among the
most severe failure categories” [15]. Examination of the data
(Fig. 2a) shows that such situations were well represented

in the ISAs, with “Recovery” (an anomaly occuring during
recovery from a fault condition), “Special Procedures” (e.g.,
calibration of an instrument), or “Hardware Failure” as the
Trigger in one-third of the ISAs. Rare events (such as an
unusual code path, an unforeseen usage scenario, a soft-
ware request for data just as it became unavailable, or the
failure of both redundant units) were thus a significant
factor in the safety-critical anomalies [23].

On the other hand, most safety-critical anomalies did
not occur at critical phases of the mission (e.g., during
launch or as a spacecraft was inserted into orbit around a
planet). Only 36 of the 199 anomalies (18 percent)
occurred during a critical phase, defined for this study
as launch, aerobraking of a spacecraft, orbital insertion
around a planet, the separation of a probe from a
spacecraft, entry into an atmosphere, descent and landing,
landed operations, and planetary encounters (e.g., swing-
by without landing). It was instead largely the complexity
of the embedded software and its interfaces with the
system, the dynamic nature of the operating environment,
and the novelty of some activities that characterized the
occurrence of anomalies.

We found that, in some cases, the triggers were not
unique, i.e., the trigger for the anomaly was not one but
instead more than one coincident failure, e.g., a double-
point failure, or a chain of events with the most proximate
trigger benign in isolation. It appears from the anomalies
we studied that one consequence of a complex system
highly coupled with its environment is that some anoma-
lies have multiple triggers with the same degree of
importance and with similar temporal proximities to the
anomaly. This finding is consistent with previous experi-
ence of similar systems [15], [21] and with comments on
ODC by a 1996 panel on statistical software engineering.
They described the nonuniqueness as “multiple spawn-
ing,” in which “although the defect types are mutually
exclusive, it is possible that a fault may result in many
defects and vice versa” [9].

Similarly, in some anomalies there were multiple targets.
For example, in one anomaly, the temporary fix was to
update a procedure to prevent recurrence of the scenario
that had caused the anomaly by restricting operations. The
permanent fix was to update the software by adding
functionality to detect and handle such a scenario in the
future. In such cases, there was more than one target with
both (or all) of them essential for preventing recurrence of
the anomaly.

The consequence for anomaly analysis is that sometimes
the values of an attribute may not be orthogonal. In the case
of multiple targets, guidelines as to which fix should be
selected as the target were practical (e.g., the first fix). In the
case of multiple triggers, guidelines as to which event to
select as the trigger (e.g., most proximate in time to the
anomaly) risked masking an understanding of dependen-
cies that such anomalies can reveal. In those cases, an
understanding of all the triggers involved in the rogue
scenario might be necessary to preclude hazardous situa-
tions in the future. This suggests that causal analysis may
play a larger role in the use of ODC for operational
anomalies in complex, safety-critical systems than in
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smaller, simpler systems. Failure scenarios in the former
systems can involve subtle dependencies among multiple
triggers, as well as multiple targets to prevent the
recurrence of the anomaly.

5.3 Target and Trigger/Target

Fig. 2b shows the distribution of Targets in the systems. The
most frequent Target (what was fixed) was “Information
Development” (61 or 31 percent). Information Development
is a change to a procedure or to documentation. The fact
that the most frequent corrective action in response to
critical operational anomalies was not to software but to
documentation or procedures indicates the importance of
adequately communicating domain knowledge to prevent
critical operational anomalies.

Fig. 2b shows that there were also many anomalies with
a Target of “Flight Software” (44 or 22 percent) or “Ground
Software” (45 or 23 percent). In roughly a third of the cases
where the Target was “Flight Software”, there was either a
new requirement for the software to handle rare but high-
consequence events, or a new requirement for the software
to compensate for hardware failures or limitations [23]. For
example, looking at Fig. 3, which shows associations
between some frequent triggers and targets, we see that
anomalies caused by hardware failures more often result in
corrective actions to flight software than to hardware. This
is typical of systems in which the hardware simply cannot
be accessed (such as spacecraft), as well as systems in which
it is difficult to access the hardware (such as implanted
medical devices), and systems in which the operating
environment is dangerous (such as those in high-radiation,
high-temperature, hostile, or poisonous settings). Such
systems challenge the common assumption in defect
analysis that what breaks is what gets fixed since, when
hardware fails or degrades, software is often modified to
compensate for the failure.

The remaining cases in which the Target was “Flight
Software” were evenly divided between design fixes and
code fixes. The lack of coding defects is not typical of defect
analyses in non-safety-critical domains but is consistent
with an earlier study that found few coding defects during
integration and system testing of two spacecraft [22].

Fig. 3 also shows that anomalies triggered by problems
with the access or delivery of data are most often fixed by
changes to “Information Development”, i.e., to documenta-
tion or procedures, or to ground software. We discuss the
prevalence of procedural fixes (Type = “Procedure”) more
fully below.

5.4 Type and Trigger/Type

Fig. 2c shows that the most frequent Type of correction that
was made in the anomalies was “Procedures.” Table 2 is a
presentation of associations between Triggers and Types,
with a few of the least-frequent attribute values merged for
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space reasons. The abbreviations used in the table are
spelled out in Fig. 1. Looking at Table 2, there were
58 anomalies in which the Target was “Information
Development” and the Type was “Procedures.”

In 41 of the 58, a new or updated procedure was the
correction. This suggests that some procedures needed for
postlaunch operations were not in place at the time, and
that these omissions contributed to safety-critical anoma-
lies. In the other 17 of these 58, an existing procedure was
not used when it should have been (44 or 23 percent). This
usually reflected a breakdown in the dissemination of the
procedure to operational personnel.

It appears to be the case that, since procedures were
added or updated to fix (i.e., prevent the recurrence) of
41 ISAs, that incomplete procedures were a frequent
contributing factor to critical anomalies. This suggests that
a checklist of anomalous situations that required new
procedures in previous operational systems might be useful
to gauge the completeness of future missions’ operational
procedures.

When the Target was “Flight Software” or “Ground
Software”, the most frequent Types were “Function/
Algorithm” (34) and “Assignment/Initialization” (31).
Defect studies on other large software systems have shown
similar results as far as the occurrence of these defects in
software [5], [20], [22].

Twenty ISAs had the following three-way association:
Activity = “Flight Operations,” Trigger = “Data Access/
Delivery,” and Target = “Ground Software.” Examination
showed that all 20 were due to end-to-end downlink
problems in receiving the data sent from the spacecraft. The
existence of this pattern reflects the technical difficulties
associated with remote communication with the spacecraft,
e.g., problems with biases, residuals, jumps, and doppler
banding.

For 27 (14 percent) of the anomalies, the Type was
“Nothing Fixed.” We conjectured that perhaps these
anomalies occurred on spacecraft that were lost before a
fix could be made. However, subsequent causal analysis
showed that only in five of the 27 anomalies was loss of
mission the reason that no fix occurred. In another eight, the
anomalies reflected failures of communication between
teams, i.e., the reported anomaly was, in fact, a false
positive. The observed software behavior was actually
correct but unexpected by the operator. The remaining
were not fixed for a variety of reasons.

Results from normalized data for each project was

similar but not identical. The most frequent Activity was

“Flight Operations” both for all spacecraft considered

together, and also for each individual spacecraft, considered

separately. The most frequent Target was “Information/

Development” for all spacecraft considered together, and

also for three individual spacecraft considered separately

(with these three comprising 149 of the 199 ISAs). The most

common Trigger was “Data Access/Delivery” for all

spacecraft, and also for four individual spacecraft (compris-

ing 154 of the 199 ISAs). The most common Type was

“Procedures” for all spacecraft, and also for four individual

spacecraft (comprising 157 of the 199 ISAs). Since the study

was limited to safety-critical, postlaunch, software ISAs, the

number of anomalies on some of the individual spacecraft

was small (e.g., eight on one system). Hence, assembling

detailed profiles of individual spacecraft was not found to

be useful.
The three projects with the most ISAs in this study—one

with 61, one with 59, and one with 29—were also checked

individually. The individual project data supported the

same findings, except that the third of these showed slightly

more anomalies due to rare events than the other systems.

Table 3 provides an anomaly signature in terms of the most

frequent combination of attribute values.

6 DISCUSSION AND EVALUATION

This section first discusses the internal and external validity

of the results. It then considers how the anomaly results can

be used to build and operate systems that may experience

fewer critical, postdeployment anomalies.

6.1 Validity

The internal validity of the measurements, i.e., whether the

ODC classification accurately measured the attributes of

activity, trigger, target, and type for the anomalies, faced

several challenges [13]. We describe here the major threats

to validity and how each was addressed in the pilot study.

One set of threats involved the analysts, principally the

consistency with which they classified anomalies. To

address inconsistent classifications, we used independent

classification by two analysts, described in Section 4. A

previous study by El Emam and Wierczorek of the

repeatability of defect classifications in ODC for code-

inspection data found that the classification scheme was in

general repeatable (not dependent on the individual) for

two people in that context [11].
Another set of threats involved the quality of the raw

data (the anomaly reports). The primary threats to validity

here were:

1. Duplicates. These were rare (only four) and were
deleted.

2. Incomplete or missing descriptions. Since the data
were missing at random, we did not try to impute
values [27] but recorded the value of missing Targets
or Types as “Unknown.”

3. Unclear or ambiguous descriptions. To avoid mis-
classifying anomalies due to misunderstanding, both
analysts classified each anomaly and sought help
from project personnel when needed.
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4. Different projects. The process of anomaly reporting
was not standardized across projects and project
phases, so there were minor differences in which
fields in the anomaly reporting forms recorded the
information.

Within the spacecraft domain, the ODC measures gave
indications both of being internally valid and of having
predictive value, although the number of critical anomalies
was too small to draw conclusions. For example, as we
added anomaly data from additional spacecraft to the
original set of three systems, the results did not change
appreciably.

External validity (the extent to which the conclusions
from the study can be generalized) is here limited by the
domain of interest (operational spacecraft) and, perhaps, by
the specific organization [1], [13]. Since many complex,
embedded, high-criticality systems share with this domain
a long operational phase and/or a high degree of main-
tenance postdeployment, we conjecture that future studies
will support the generalization of these conclusions to
similar systems. The pilot study was designed, documen-
ted, and run such that others can both verify and replicate
the results. Replication might involve what Basili and
Lanubile call “a family of experiments” [1], for example, on
other NASA projects, other critical legacy systems, non-
critical (rather than critical) spacecraft anomalies, or earlier
development phases of the same systems.

6.2 Using Anomaly Analysis to Enhance Safety

The spacecraft domain shares with many other high-

integrity domains operation in environments that are only

partially understood, use of novel technologies, highly

interactive subsystems, timing constraints for correct

operations, and a high degree of autonomy. This study

identified several directions for future improvement that

may help reduce operational anomalies in these and other

safety-critical systems:

. Integrating requirements engineering into mainte-

nance activities [23], [25]. The finding that new
software requirements continue to emerge post-

launch in response to anomalies (to accommodate

rare events or to compensate for hardware fail-

ures) indicates that the process of requirements

specification, analysis, and verification continues

postdeployment.
. Capturing requirements confusions to prevent fu-

ture anomalies. Several anomalies turned out to

require no corrective action because the software

behaved as it should. The investigation of anomalies
(including surprises) rather than just defects is

valuable in that anomalies document sources of

confusion on the part of the operational team or

users. Using data from anomaly reports to supple-

ment training and documentation can limit recur-

rence of these anomalies, especially in systems with

long lifetimes and high turnover of personnel.
. Maintaining the documentation of system require-

ments allocated to operational procecures. For high-
criticality systems, traceability of procedures to

requirements (e.g., required sequencing of activities,
required preconditions for activities, etc.) needs to be
kept up-to-date and disseminated to operators.

. Mining anomaly reports to reuse knowledge regard-

ing one system on other, similar systems, especially

within a product line. Anomaly reports in this study

often explicitly warned of similar vulnerabilities on

future systems. Such feed-forward references need
to be captured for inclusion in the inspections,

reviews, and testcases of subsequent, similar sys-

tems, especially as organizations move toward a

product-line approach. Anomaly analysis can be a

valuable product-line asset.
. Challenging the operational assumptions. Anomaly

analysis revealed patterns of data that were not
consistent with some existing rationales. Identify-
ing and investigating patterns of anomalies pro-
vided additional insight into operational risks
beyond what was currently available through other
methods.

7 CONCLUSION

The analysis of nearly 200 anomaly reports from seven
spacecraft assembled a profile of operational, safety-critical
software anomalies. Among the findings were that:

. The most frequent Trigger (what enabled the
anomaly to occur) was difficulty accessing or
delivering data. Most operational anomalies did
not occur during critical mission phases.

. The most frequent Target (what was fixed) was
information development rather than either flight or
ground software. When there were changes to flight
software, these often resulted from new software
requirements to compensate for hardware degrada-
tion or to provide more robust fault protection
against rare events.

. The most frequent Type of fix to was operating
procedures. Anomalies did not result from failure to
follow procedures but in the appearance or evolu-
tion of conditions requiring new or updated proce-
dures to prevent recurrence.

. Anomaly reports that described inaccurate expecta-
tions by the operators (rather than actual defects)
provided insights into how to improve documenta-
tion or training to prevent similar anomalies in the
future.

System behavior, requirements, and procedures contin-
ued to evolve during operations in these systems, due
largely to the dynamic nature of the environment, the
degradation of hardware, and the complexity of the
operational scenarios. An accurate understanding of the
critical, operational anomalies that occurred on the space-
craft systems provided some insights into how to reduce
recurring anomalies for these and other, similar systems.

The results presented here show that empirical analysis
of operational anomalies can provide useful information not
currently available to projects. The anomaly analysis
contributes to a better understanding of what triggers and
prevents safety-critical, operational anomalies.
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